Hệ phương trình \(\left\{ \begin{array}{l}x\sqrt 5 - \left( {1 + \sqrt 3 } \right)y = 1\\\left( {1 - \sqrt 3 } \right)x + y\sqrt 5 = 1\end{array} \right.\) có nghiệm là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiNhân hai vế của phương trình thứ nhất với \(\sqrt 5 \) , ta được \(5.x - \sqrt 5 \left( {1 + \sqrt 3 } \right)y = \sqrt 5 \)
Nhân hai vế của phương trình thứ hai với \(\left( {1 + \sqrt 3 } \right)\), ta được \( - 2x + y\sqrt 5 \left( {1 + \sqrt 3 } \right) = \left( {1 + \sqrt 3 } \right)\)
Cộng từng vế của hai phương trình mới nhận được, ta có \(3x = 1 + \sqrt 5 + \sqrt 3 \) suy ra \(x = \dfrac{{1 + \sqrt 5 + \sqrt 3 }}{3}\)
Nhân hai vế của phương trình thứ nhất với \(1 - \sqrt 3 \) , ta được \(x\sqrt 5 \left( {1 - \sqrt 3 } \right) + 2y = 1 - \sqrt 3 \)
Nhân hai vế của phương trình thứ hai với \( - \sqrt 5 \) , ta được \( - \sqrt 5 \left( {1 - \sqrt 3 } \right)x - 5y = - \sqrt 5 \)
Cộng từng vế của hai phương trình mới nhận được, ta có \( - 3y = 1 - \sqrt 5 - \sqrt 3 \) suy ra \(x = \dfrac{{ - 1 + \sqrt 5 + \sqrt 3 }}{3}\)
Vậy hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right) = \left( {\dfrac{{\sqrt 5 + \sqrt 3 + 1}}{3};\dfrac{{\sqrt 5 + \sqrt 3 - 1}}{3}} \right)\)