Gọi \(S\) là tập các giá trị của tham số thực \(m\) để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - 3x\,\,\,\,\,\,\,\,\,\,\,khi\,\,\,x \ne 1\\{m^2} + m - 8\,\,\,\,khi\,\,x = 1\end{array} \right.\) liên tục tại \(x = 1\). Tích các phần tử của tập \(S\) bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có:
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {{x^2} - 3x} \right) = - 2\\f\left( 1 \right) = {m^2} + m - 8\end{array}\)
Để hàm số liên tục tại \(x = 1\) thì \(\mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\)
\( \Rightarrow {m^2} + m - 8 = - 2 \Leftrightarrow \left[ \begin{array}{l}m = - 3\\m = 2\end{array} \right. \Leftrightarrow S = \left\{ { - 3;2} \right\}\).
Vậy tích các phần tử của \(S\) là \( - 3.2 = - 6\).
Chọn C.
Đề thi giữa HK2 môn Toán 11 năm 2021-2022
Trường THPT Gia Định