ADMICRO
Tìm \(\displaystyle x\), biết \(\displaystyle {\left( {\sqrt 3 - \sqrt 2 } \right)^x} = \sqrt 3 + \sqrt 2 \).
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ZUNIA12
Lời giải:
Báo saiTa có: \(\displaystyle \left( {\sqrt 3 - \sqrt 2 } \right)\left( {\sqrt 3 + \sqrt 2 } \right) = 1\) \(\displaystyle \Rightarrow \sqrt 3 + \sqrt 2 = \frac {1}{{\sqrt 3 - \sqrt 2 }} = {\left( {\sqrt 3 - \sqrt 2 } \right)^{ - 1}}\)
\(\displaystyle \Rightarrow {\left( {\sqrt 3 - \sqrt 2 } \right)^x} = \sqrt 3 + \sqrt 2 = {\left( {\sqrt 3 - \sqrt 2 } \right)^{ - 1}}\) \(\displaystyle \Leftrightarrow x = - 1\).
ZUNIA9
AANETWORK