ADMICRO
Cho a , b, c>0 đôi một khác nhau và khác 1, Khẳng định nào sau đây là khẳng định đúng?
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ZUNIA12
Lời giải:
Báo sai\(\log _{a} \frac{b}{c}=\log _{a}\left(\frac{c}{b}\right)^{-1}=-\log _{a} \frac{c}{b} \Rightarrow \log _{a}^{2} \frac{b}{c}=\left(-\log _{a} \frac{c}{b}\right)^{2}=\log _{a}^{2} \frac{c}{b}\)
\(\log _{a} b \cdot \log _{b} c \cdot \log _{c} a=1 \Leftrightarrow \log _{a} b \cdot \log _{b} a=\log _{a} a=1\)
Từ hai kết quả trên ta có:
\(\log _{\frac{a}{b}}^{2} \frac{c}{b} \log _{\frac{b}{c}}^{2} \frac{a}{c} \log _{\frac{c}{a}}^{2} \frac{b}{a}=\left(\log _{\frac{a}{b}} \frac{b}{c} \cdot \log _{\frac{b}{c}} \frac{c}{a} \log _{\frac{c}{a}} \frac{a}{b}\right)^{2}=1\)
ZUNIA9
AANETWORK