Cho hàm số bậc bốn trùng phương \(y=f\left( x \right)\) có đồ thị là đường cong trong hình bên. Biết hàm số \(f\left( x \right)\) đạt cực trị tại ba điểm \({{x}_{1}},{{x}_{2}},\,{{x}_{3}}\,\,({{x}_{1}}<{{x}_{2}}<{{x}_{3}})\) thỏa mãn \({{x}_{1}}+{{x}_{3}}=4\). Gọi \({{S}_{1}}\) và \({{S}_{2}}\) là diện tích của hai hình phẳng được gạch trong hình. Tỉ số \(\frac{{{S}_{1}}}{{{S}_{2}}}\) bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiRõ ràng kết quả bài toán không đổi khi ta tịnh tiến đồ thị sang trái sao cho \({{x}_{2}}=0\).
Gọi \(g(x)=a{{x}^{4}}+b{{x}^{2}}+c\), ta có hàm số g(x) là chẵn và có 3 điểm cực trị tương ứng là \(-2;\,0;\,\,2\) là các nghiệm của phương trình \(4a{{x}^{3}}+2bx=0\).
Dựa vào đồ thị g(x), ta có g(0)=0. Từ đó suy ra \(g(x)=a({{x}^{4}}-8{{x}^{2}})\) với a>0.
Do tính đối xứng của hàm trùng phương nên diện tích hình chữ nhật bằng \(2{{S}_{1}}+{{S}_{2}}=\left| g(2) \right|.4=64a\)
Ta có \({{S}_{1}}\) là diện tích hình phẳng giới hạn bởi đồ thị hàm số g(x), trục hoành, đường thẳng \(x=-2,\,\,x=0\). \({{S}_{1}}=\int\limits_{-2}^{0}{\left| g(x) \right|\text{d}x}=a\int\limits_{-2}^{0}{\left| {{x}^{4}}-8{{x}^{2}} \right|\text{d}x}=\frac{224a}{15}\). Suy ra \({{S}_{2}}=64a-2.\frac{224a}{15}=\frac{512a}{15}\).
Vậy \(\frac{{{S}_{1}}}{{{S}_{2}}}=\frac{224}{512}=\frac{7}{16}\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Chu Văn An lần 2