Trong không gian Oxyz, cho điểm \(A\left( {1;0;0} \right),B\left( {0; - 1;0} \right),C\left( {0;0;1} \right),D\left( {1; - 1;1} \right)\). Mặt cầu tiếp xúc 6 cạnh của tứ diện ABCD cắt (ACD) theo thiết diện có diện tích S. Chọn mệnh đề đúng?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiDễ dàng tính được \(AB = BC = CD = DA = \sqrt 2 \Rightarrow \) Tứ diện ABCD là tứ diện đều.
\(\Rightarrow \) Tâm mặt cầu tiếp xúc với 6 cạnh của tứ diện chính là tâm của tứ diện đều.
Gọi M, N lần lượt là trung điểm của AB, CD \( \Rightarrow M\left( {\frac{1}{2}; - \frac{1}{2};0} \right),N\left( {\frac{1}{2};\frac{{ - 1}}{2};1} \right)\)
Gọi I là trung điểm của MN \( \Rightarrow I\left( {\frac{1}{2}; - \frac{1}{2};\frac{1}{2}} \right)\) là tâm của tứ diện ABCD.
Bán kính mặt cầu cần tìm là \(R = d\left( {I;AB} \right) = \frac{{\left| {\left[ {\overrightarrow {IA} ;\overrightarrow {AB} } \right]} \right|}}{{\left| {\overrightarrow {AB} } \right|}} = \frac{{\sqrt 6 }}{6}\)
Ta có \(\left\{ \begin{array}{l}
\overrightarrow {AC} = \left( { - 1;0;1} \right)\\
\overrightarrow {AD} = \left( {0; - 1;1} \right)
\end{array} \right. \Rightarrow \overrightarrow n = \left[ {\overrightarrow {AC} ;\overrightarrow {AD} } \right] = \left( {1;1;1} \right)\) là 1 VTPT của (ACD).
\(\Rightarrow \) Phương trình (ACD) là: \(\left( {x - \frac{1}{2}} \right) + \left( {y + \frac{1}{2}} \right) + \left( {z - \frac{1}{2}} \right) = 0 \Leftrightarrow x + y + z - \frac{1}{2} = 0\)
\(d\left( {I;\left( {ACD} \right)} \right) = \frac{{\left| {\frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2}} \right|}}{{\sqrt 3 }} = 0 \Rightarrow I \in \left( {ACD} \right)\). Do đó mặt cầu tiếp xúc 6 cạnh của tứ diện ABCD cắt (ACD) theo thiết diện là đường tròn lớn có bán kính \(R = \frac{{\sqrt 6 }}{6} \Rightarrow S = \pi {R^2} = \frac{\pi }{6}\)
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Hưng Yên lần 3