ADMICRO
Trong khai triển nhị thức \({\left( {a + 2} \right)^{n + 6}}\) có tất cả 17 số hạng. Khi đó giá trị n bằng:
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo sai\({\left( {a + 2} \right)^{n + 6}} = \sum\limits_{k = 0}^{n + 6} {C_{n + 6}^k{a^k}{{.2}^{n + 6 - k}}} \), do đó khai triển trên có n + 7 số hạng.
Theo bài ra ta có: \(n + 7 = 17 \Leftrightarrow n = 10\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Hàm Rồng - Thanh Hóa
10/11/2024
2 lượt thi
0/50
Bắt đầu thi
ZUNIA12
ZUNIA9
AANETWORK