Có bao nhiêu giá trị nguyên của tham số \(m \in \left[ { - 10;10} \right]\) để bất phương trình sau nghiệm đúng \(\forall x \in R:{\left( {6 + 2\sqrt 7 } \right)^x} + \left( {2 - m} \right){\left( {3 - \sqrt 7 } \right)^x} - \left( {m + 1} \right){2^x} \ge 0\) ?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiChia cả 2 vế của bất phương trình cho \({2^x} > 0\) ta được: \({\left( {3 + \sqrt 7 } \right)^x} + \left( {2 - m} \right){\left( {\frac{{3 - \sqrt 7 }}{2}} \right)^x} - \left( {m + 1} \right) \ge 0\)
Nhận xét: \({\left( {3 + \sqrt 7 } \right)^x}.{\left( {\frac{{3 - \sqrt 7 }}{2}} \right)^x} = 1\), do đó khi ta đặt \(t = {\left( {3 + \sqrt 7 } \right)^x}\left( {t > 0} \right) \Rightarrow {\left( {\frac{{3 - \sqrt 7 }}{2}} \right)^x} = \frac{1}{t}\)
Phương trình trở thành: \(t + \left( {2 - m} \right)\frac{1}{t} - \left( {m + 1} \right) \ge 0 \Leftrightarrow {t^2} - \left( {m + 1} \right)t + 2 - m \ge 0\)
\( \Leftrightarrow {t^2} - t + 2 \ge m\left( {t + 1} \right) \Leftrightarrow m \le \frac{{{t^2} - t + 2}}{{t + 1}} = f\left( t \right){\rm{ }}\forall t > 0 \Leftrightarrow m \le \mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( t \right)\)
Xét hàm số \(f\left( t \right) = \frac{{{t^2} - t + 2}}{{t + 1}}\left( {t > 0} \right)\) ta có: \(f'\left( t \right) = \frac{{\left( {2t - 1} \right)\left( {t + 1} \right) - {t^2} + t - 2}}{{{{\left( {t + 1} \right)}^2}}} = \frac{{{t^2} + 2t - 3}}{{{{\left( {t + 1} \right)}^2}}} = 0 \Leftrightarrow \left[ \begin{array}{l}
t = 1\\
t = - 3
\end{array} \right.\)
BBT
Từ BBT \( \Rightarrow m \le 1\)
Kết hợp điều kiện đề bài \( \Rightarrow \left\{ \begin{array}{l}
m \in R\\
m \in \left[ { - 10;1} \right]
\end{array} \right. \Rightarrow \) có 12 giá trị của m thỏa mãn yêu cầu bài toán.
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Hàm Rồng - Thanh Hóa