Trong hệ tọa độ \(Oxyz\), cho điểm \(A\left( {3;5;3} \right)\) và hai mặt phẳng \(\left( P \right):2x + y + 2z - 8 = 0\), \(\left( Q \right):x - 4y + z - 4 = 0\). Viết phương trình đường thẳng \(d\) đi qua \(A\) và song song với cả hai mặt phẳng \(\left( P \right),\left( Q \right)\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(\overrightarrow {{n_P}} = \left( {2;1;2} \right),\overrightarrow {{n_Q}} = \left( {1; - 4;1} \right)\) \( \Rightarrow \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right] = \left( {9;0; - 9} \right)\)
Đường thẳng \(d\) song song với cả hai mặt phẳng \(\left( P \right),\left( Q \right)\) nên \(\overrightarrow {{u_d}} \bot \overrightarrow {{n_P}} ,\overrightarrow {{u_d}} \bot \overrightarrow {{n_Q}} \) và chọn \(\overrightarrow {{u_d}} = \dfrac{1}{9}\left[ {\overrightarrow {{n_P}} ,\overrightarrow {{n_Q}} } \right] = \left( {1;0; - 1} \right)\).
\(d\) đi qua \(A\left( {3;5;3} \right)\) và nhận \(\overrightarrow {{u_d}} = \left( {1;0; - 1} \right)\) làm VTCP nên \(d:\left\{ \begin{array}{l}x = 3 + t\\y = 5\\z = 3 - t\end{array} \right.\).
Chọn C.