Trong hệ tọa độ \(Oxyz\), cho hai đường thẳng chéo nhau \({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y + 2}}{1} = \dfrac{{z - 6}}{{ - 2}}\) và \({d_2}:\dfrac{{x - 4}}{1} = \dfrac{{y + 2}}{{ - 2}} = \dfrac{{z + 1}}{3}\) . Phương trình mặt phẳng \(\left( P \right)\) chứa \({d_1}\) và song song với \({d_2}\) là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐường thẳng \({d_1}:\dfrac{{x - 2}}{2} = \dfrac{{y + 2}}{1} = \dfrac{{x - 6}}{{ - 2}}\) đi qua \(M\left( {2; - 2;6} \right)\) và có VTCP \(\overrightarrow {{u_1}} = \left( {2;1; - 2} \right)\)
Đường thẳng \({d_2}:\dfrac{{x - 4}}{1} = \dfrac{{y + 2}}{{ - 2}} = \dfrac{{z + 1}}{3}\) có VTCP \(\overrightarrow {{u_2}} = \left( {1; - 2;3} \right)\)
Vì mặt phẳng \(\left( P \right)\) chứa \({d_1}\) và song song với \({d_2}\) nên 1 VTPT của mặt phẳng \(\left( P \right)\) là \(\overrightarrow n = \left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] = \left( { - 1; - 8; - 5} \right)\)
Phương trình mặt phẳng \(\left( P \right): - 1\left( {x - 2} \right) - 8\left( {y + 2} \right) - 5\left( {z - 6} \right) = 0\) \( \Leftrightarrow x + 8y + 5 - 16 = 0\)
Chọn B.