Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều cạnh \(a,\) tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy. Tính theo \(a\) thể tích khối chóp \(S.ABC\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(H\) là trung điểm \(AB \Rightarrow SH \bot AB\) (vì tam giác \(SAB\) đều)
Ta có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\\\left( {SAB} \right) \cap \left( {ABC} \right) = AB\\SH \bot AB;SH \subset \left( {SAB} \right)\end{array} \right. \Rightarrow SH \bot \left( {ABC} \right)\)
Tam giác \(ABC\) đều cạnh \(a\) nên \(AB = a \Rightarrow \) tam giác \(SAB\) cũng là tam giác đều cạnh \(a.\)
Vì \(SH\) là đường trung tuyến trong tam giác \(SAB\) đều cạnh \(a\) nên \(SH = \dfrac{{a\sqrt 3 }}{2}\)
Diện tích đáy \({S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}\)
Thể tích khối chóp \(V = \dfrac{1}{3}SH.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{a\sqrt 3 }}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}}}{8}\)
Chọn A.