Ông An có một mảnh vườn hình elip có độ dài trục lớn bằng 16m và độ dài trục bé bằng 10m. Ông muốn trồng hoa trên một dải đất rộng 8m và nhận trục bé của elip làm trục đối xứng (như hình vẽ). Biết kinh phí để trồng hoa là 100.000$ đồng/\(1\,{{m}^{2}}\). Hỏi ông An cần bao nhiêu tiền để trồng hoa trên dải đất đó? (Số tiền được làm tròn đến hàng nghìn).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGiả sử elip có phương trình \(\frac{{{x}^{2}}}{{{a}^{2}}}+\frac{{{y}^{2}}}{{{b}^{2}}}=1\), với a>b>0.
Từ giả thiết ta có \(2a=16\Rightarrow a=8\) và \(2b=10\Rightarrow b=5\)
Vậy phương trình của elip là \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{25}} = 1 \Rightarrow \left[ \begin{array}{l} y = - \frac{5}{8}\sqrt {64 - {y^2}} \,\,\,\left( {{E_1}} \right)\\ y = \frac{5}{8}\sqrt {64 - {y^2}} \,{\rm{ }}\,\,\left( {{E_1}} \right) \end{array} \right.\)
Khi đó diện tích dải vườn được giới hạn bởi các đường \(\left( {{E}_{1}} \right);\,\,\left( {{E}_{2}} \right);\,\,x=-4;\,\,x=4\) và diện tích của dải vườn là \(S=2\int\limits_{-4}^{4}{\frac{5}{8}\sqrt{64-{{x}^{2}}}\text{d}x}=\frac{5}{2}\int\limits_{0}^{4}{\sqrt{64-{{x}^{2}}}\text{d}x}\)
Tính tích phân này bằng phép đổi biến x=8sin t, ta được \(S=80\left( \frac{\pi }{6}+\frac{\sqrt{3}}{4} \right)\)
Khi đó số tiền là \(T=80\left( \frac{\pi }{6}+\frac{\sqrt{3}}{4} \right).100000=7652891,82\simeq 7.653.000\)
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Tô Hiệu lần 2