Giá trị lớn nhất của hàm số \(f\left( x \right)=\frac{{{x}^{2}}-8x}{x+1}\) trên đoạn \(\left[ 1;3 \right]\) bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTập xác định: \(D=\mathbb{R}\backslash \left\{ -1 \right\}\).
Đạo hàm: \({f}'\left( x \right)=\frac{{{x}^{2}}+2x-8}{{{\left( x+1 \right)}^{2}}}\).
Xét \({f}'\left( x \right)=0\Leftrightarrow {{x}^{2}}+2x-8=0\Leftrightarrow \left[ \begin{align} & x=2\in \left[ 1\,;\,3 \right] \\ & x=-4\notin \left[ 1\,;\,3 \right] \\ \end{align} \right.\)
Ta thấy hàm số đã cho liên tục và có đạo hàm trên đoạn \(\left[ 1\,;\,3 \right]\).
Ta có: \(f\left( 1 \right)=-\frac{7}{2}; f\left( 3 \right)=-\frac{15}{4}; f\left( 2 \right)=-4\).
Vậy \(\underset{\left[ 1\,;\,3 \right]}{\mathop{\max }}\,f\left( x \right)=f\left( 1 \right)=-\frac{7}{2}\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Văn Thoại lần 2