ADMICRO
Có bao nhiêu số nguyên x∈[−2022;2022]x∈[−2022;2022] thỏa mãn (3x2−27x)√log2(4x)−2≥0(3x2−27x)√log2(4x)−2≥0?
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 5
Chủ đề: Đề thi THPT QG
Môn: Toán
Lời giải:
Báo saiChọn A
(3x2−27x)√log2(4x)−2≥0(3x2−27x)√log2(4x)−2≥0
⇔[log2(4x)−2=0{log2(4x)−2>03x2−27x≥0⇔[x=1{x>1x2≥3x⇔[x=1x≥3
Mà x nguyên thuộc [−2022;2022] nên có 2021 số.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi thử tốt nghiệp THPT môn Toán năm 2023
Trường THPT Chuyên Trần Phú
10/06/2025
293 lượt thi
0/50
Bắt đầu thi
ZUNIA12
ZUNIA9
AANETWORK