Cho tứ diện ABCD có AB = 3a,AC = 4a ,AD = 5a. Gọi M,N,P lần lượt là trọng tâm các tam giác DAB ,DBC ,DCA . Tính thể tích V của tứ diện DMDMNP khi thể tích tứ diện ABCD đạt giá trị lớn nhất.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiTa có: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D % aebbfv3ySLgzGueE0jxyaibaieYlh9qrpeeu0dXdh9vqqj-hEeeu0x % Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs % 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO % qaamaalaaabaGaamOvamaaBaaaleaacaWGebGaaiOlaiaad2eacaWG % obGaamiuaaqabaaakeaacaWGwbWaaSbaaSqaaiaadseacaGGUaGaam % isaiaadMeacaWGlbaabeaaaaGccqGH9aqpdaWcaaqaaiaadseacaWG % nbaabaGaamiraiaadIeaaaGaaiOlamaalaaabaGaamiraiaad6eaae % aacaWGebGaamysaaaacaGGUaWaaSaaaeaacaWGebGaamiuaaqaaiaa % dseacaWGlbaaaiabg2da9maabmaabaWaaSaaaeaacaaIYaaabaGaaG % 4maaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaaaa!54C5! \frac{{{V_{D.MNP}}}}{{{V_{D.HIK}}}} = \frac{{DM}}{{DH}}.\frac{{DN}}{{DI}}.\frac{{DP}}{{DK}} = {\left( {\frac{2}{3}} \right)^3}\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D % aebbfv3ySLgzGueE0jxyaibaieYlh9qrpeeu0dXdh9vqqj-hEeeu0x % Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs % 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO % qaaiabgkDiElaadAfadaWgaaWcbaGaamiraiaac6cacaWGnbGaamOt % aiaadcfaaeqaaOGaeyypa0ZaaSaaaeaacaaI4aaabaGaaGOmaiaaiE % daaaGaamOvamaaBaaaleaacaWGebGaaiOlaiaadIeacaWGjbGaam4s % aaqabaGccqGH9aqpdaWcaaqaaiaaiIdaaeaacaaIYaGaaG4naaaaca % GGUaWaaSaaaeaacaaIXaaabaGaaGinaaaacaGGUaGaamOvamaaBaaa % leaacaWGebGaaiOlaiaadgeacaWGcbGaam4qaaqabaGccqGH9aqpda % WcaaqaaiaaikdaaeaacaaIYaGaaG4naaaacaGGUaGaamOvamaaBaaa % leaacaWGebGaaiOlaiaadgeacaWGcbGaam4qaaqabaaaaa!5D2B! \Rightarrow {V_{D.MNP}} = \frac{8}{{27}}{V_{D.HIK}} = \frac{8}{{27}}.\frac{1}{4}.{V_{D.ABC}} = \frac{2}{{27}}.{V_{D.ABC}}\)
Ta có:\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D % aebbfv3ySLgzGueE0jxyaibaieYlh9qrpeeu0dXdh9vqqj-hEeeu0x % Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs % 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO % qaaiaadAfadaWgaaWcbaGaamiraiaac6cacaWGbbGaamOqaiaadoea % aeqaaOGaeyypa0ZaaSaaaeaacaaIXaaabaGaaG4maaaacaGGUaGaam % 4uamaaBaaaleaacaWGbbGaamOqaiaadoeaaeqaaOGaaiOlaiaadsea % caWGfbaaaa!474B! {V_{D.ABC}} = \frac{1}{3}.{S_{ABC}}.DE\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D % aebbfv3ySLgzGueE0jxyaibaieYlh9qrpeeu0dXdh9vqqj-hEeeu0x % Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs % 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO % qaaiabg2da9maalaaabaGaaGymaaqaaiaaiodaaaGaaiOlamaalaaa % baGaaGymaaqaaiaaikdaaaGaaiOlaiaadgeacaWGcbGaaiOlaiaadg % eacaWGdbGaaiOlaiGacohacaGGPbGaaiOBaiaadgeacaGGUaGaamir % aiaadweaaaa!495D! = \frac{1}{3}.\frac{1}{2}.AB.AC.\sin A.DE\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D % aebbfv3ySLgzGueE0jxyaibaieYlh9qrpeeu0dXdh9vqqj-hEeeu0x % Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs % 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO % qaaiabgsMiJoaalaaabaGaaGymaaqaaiaaiAdaaaGaamyqaiaadkea % caGGUaGaamyqaiaadoeacaGGUaGaamiraiaadweaaaa!42D4! \le \frac{1}{6}AB.AC.DE\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D % aebbfv3ySLgzGueE0jxyaibaieYlh9qrpeeu0dXdh9vqqj-hEeeu0x % Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs % 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO % qaaiabgsMiJoaalaaabaGaaGymaaqaaiaaiAdaaaGaamyqaiaadkea % caGGUaGaamyqaiaadoeacaGGUaGaamiraiaadgeaaaa!42D0! \le \frac{1}{6}AB.AC.DA\)
DE là đường cao của hình chóp D.ABC
Dấu bằng xảy ra khi: DA = DE và \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D % aebbfv3ySLgzGueE0jxyaibaieYlh9qrpeeu0dXdh9vqqj-hEeeu0x % Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs % 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO % qaamaaHaaabaGaamOqaiaadgeacaWGdbaacaGLcmaacqGH9aqpcaaI % 5aGaaGimamaaCaaaleqabaGaeSigI8gaaaaa!4083! \widehat {BAC} = {90^ \circ }\)
Suy ra:\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D % aebbfv3ySLgzGueE0jxyaibaieYlh9qrpeeu0dXdh9vqqj-hEeeu0x % Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs % 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO % qaamaabmaabaGaamOvamaaBaaaleaacaWGebGaaiOlaiaadgeacaWG % cbGaam4qaaqabaaakiaawIcacaGLPaaadaWgaaWcbaGaciyBaiaacg % gacaGG4baabeaakiabg2da9maalaaabaGaaGymaaqaaiaaiodaaaGa % aiOlamaalaaabaGaaGymaaqaaiaaikdaaaGaaiOlaiaadgeacaWGcb % GaaiOlaiaadgeacaWGdbGaaiOlaiaadseacaWGbbGaeyypa0ZaaSaa % aeaacaaIXaaabaGaaGOnaaaacaGGUaGaaG4maiaadggacaGGUaGaaG % inaiaadggacaGGUaGaaGynaiaadggacqGH9aqpcaaIXaGaaGimaiaa % dggadaahaaWcbeqaaiaaiodaaaaaaa!5C5A! {\left( {{V_{D.ABC}}} \right)_{\max }} = \frac{1}{3}.\frac{1}{2}.AB.AC.DA = \frac{1}{6}.3a.4a.5a = 10{a^3}\)
Vây: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D % aebbfv3ySLgzGueE0jxyaibaieYlh9qrpeeu0dXdh9vqqj-hEeeu0x % Xdbba9frFj0-OqFfea0dXdd9vqaq-JfrVkFHe9pgea0dXdar-Jb9hs % 0dXdbPYxe9vr0-vr0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaO % qaaiaadAfadaWgaaWcbaGaamiraiaac6cacaWGnbGaamOtaiaadcfa % aeqaaOGaeyypa0ZaaSaaaeaacaaIYaaabaGaaGOmaiaaiEdaaaGaai % OlaiaaigdacaaIWaGaamyyamaaCaaaleqabaGaaG4maaaakiabg2da % 9maalaaabaGaaGOmaiaaicdaaeaacaaIYaGaaG4naaaacaWGHbWaaW % baaSqabeaacaaIZaaaaaaa!4BB1! {V_{D.MNP}} = \frac{2}{{27}}.10{a^3} = \frac{{20}}{{27}}{a^3}\)
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 3