Trong không gian với hệ trục tọa độ Oxyz , gọi \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHXoqyaiaawIcacaGLPaaaaaa!391C! \left( \alpha \right)\) là mặt phẳng chứa đường thẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaai % OoaiaaykW7daWcaaqaaiaadIhacqGHsislcaaIYaaabaGaaGymaaaa % cqGH9aqpdaWcaaqaaiaadMhacqGHsislcaaIXaaabaGaaGymaaaacq % GH9aqpdaWcaaqaaiaadQhaaeaacqGHsislcaaIYaaaaaaa!4549! \Delta :\,\frac{{x - 2}}{1} = \frac{{y - 1}}{1} = \frac{z}{{ - 2}}\) và vuông góc với mặt phẳng \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHYoGyaiaawIcacaGLPaaacaGG6aGaaGPaVlaadIhacqGHRaWkcaWG % 5bGaey4kaSIaaGOmaiaadQhacqGHRaWkcaaIXaGaeyypa0JaaGimaa % aa!443E! \left( \beta \right):\,x + y + 2z + 1 = 0\). Khi đó giao tuyến của hai mặt phẳng \((\alpha) ; % MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHYoGyaiaawIcacaGLPaaaaaa!391E! \left( \beta \right)\), có phương trình
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeuiLdqKaai % OoaiaaykW7daWcaaqaaiaadIhacqGHsislcaaIYaaabaGaaGymaaaa % cqGH9aqpdaWcaaqaaiaadMhacqGHsislcaaIXaaabaGaaGymaaaacq % GH9aqpdaWcaaqaaiaadQhaaeaacqGHsislcaaIYaaaaaaa!4549! \Delta :\,\frac{{x - 2}}{1} = \frac{{y - 1}}{1} = \frac{z}{{ - 2}}\) đi qua M ( 2;1;0) và có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaads % hacaWGJbGaamiCaiaacQdacaaMc8UaaGPaVpaaFiaabaGaamyDaaGa % ay51GaGaeyypa0ZaaeWaaeaacaaIXaGaai4oaiaaykW7caaIXaGaai % 4oaiaaykW7cqGHsislcaaIYaaacaGLOaGaayzkaaaaaa!4A89! vtcp:\,\,\overrightarrow u = \left( {1;\,1;\, - 2} \right)\) .
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHYoGyaiaawIcacaGLPaaacaGG6aGaaGPaVlaadIhacqGHRaWkcaWG % 5bGaey4kaSIaaGOmaiaadQhacqGHRaWkcaaIXaGaeyypa0JaaGimaa % aa!443E! \left( \beta \right):\,x + y + 2z + 1 = 0\) có \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaads % hacaWGWbGaamiDaiaacQdacaaMc8UaaGPaVpaaFiaabaGaamOBaaGa % ay51GaGaeyypa0ZaaeWaaeaacaaIXaGaai4oaiaaykW7caaIXaGaai % 4oaiaaykW7caaIYaaacaGLOaGaayzkaaaaaa!49A6! vtpt:\,\,\overrightarrow n = \left( {1;\,1;\,2} \right)\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHXoqyaiaawIcacaGLPaaacaGG6aGaaGPaVpaaceaaeaqabeaaqaaa % aaaaaaWdbiaadgracaWGPbGaaeiiaiaadghacaWG1bGaamyyaiaayk % W7caWGnbaabaGaamODaiaadshacaWGWbGaamiDaiaaykW7daWadaqa % amaaFiaabaGaamyDaaGaay51GaGaaiilaiaaykW7daWhcaqaaiaad6 % gaaiaawEniaaGaay5waiaaw2faaiabg2da9maabmaabaGaaGinaiaa % cUdacaaMc8UaeyOeI0IaaGinaiaacUdacaaMc8UaaGimaaGaayjkai % aawMcaaiabg2da9iaaisdadaqadaqaaiaaigdacaGG7aGaaGPaVlab % gkHiTiaaigdacaGG7aGaaGPaVlaaicdaaiaawIcacaGLPaaaaaWdai % aawUhaaaaa!6843! \left( \alpha \right):\,\left\{ \begin{array}{l} đi{\rm{ }}qua\,M\\ vtpt\,\left[ {\overrightarrow u ,\,\overrightarrow n } \right] = \left( {4;\, - 4;\,0} \right) = 4\left( {1;\, - 1;\,0} \right) \end{array} \right.\)
Phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq % aHXoqyaiaawIcacaGLPaaacaGG6aGaaGPaVpaabmaabaGaamiEaiab % gkHiTiaaikdaaiaawIcacaGLPaaacqGHsisldaqadaqaaiaadMhacq % GHsislcaaIXaaacaGLOaGaayzkaaGaeyypa0JaaGimaaaa!4670! \left( \alpha \right):\,\left( {x - 2} \right) - \left( {y - 1} \right) = 0\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaam % iEaiabgkHiTiaadMhacqGHsislcaaIXaGaeyypa0JaaGimaaaa!3EA0! \Leftrightarrow x - y - 1 = 0\)
Gọi (d) là giao tuyến của hai mặt phẳng \((\alpha)\),\((\beta)\) .
ta có (d) đi qua N(0 ; -1 ; 0) ;
(d) \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG2bGaamiDaiaadogacaWGWbWdaiaayEW7peWaamWaa8aabaWd % biqad6gagaWcaiaacYcapaGaaG5bV-qadaWhcaWdaeaapeGaamOBa8 % aadaWgaaWcbaWdbiabeg7aHbWdaeqaaaGcpeGaay51GaaacaGLBbGa % ayzxaaGaeyypa0ZaaeWaa8aabaWdbiaaikdacaGG7aWdaiaayEW7pe % GaaGOmaiaacUdapaGaaG5bV-qacqGHsislcaaIYaaacaGLOaGaayzk % aaGaeyypa0JaaGOmamaabmaapaqaa8qacaaIXaGaai4oa8aacaaMh8 % +dbiaaigdacaGG7aWdaiaayEW7peGaeyOeI0IaaGymaaGaayjkaiaa % wMcaaaaa!5BF1! vtcp{\mkern 1mu} \left[ {\vec n,{\mkern 1mu} \overrightarrow {{n_\alpha }} } \right] = \left( {2;{\mkern 1mu} 2;{\mkern 1mu} - 2} \right) = 2\left( {1;{\mkern 1mu} 1;{\mkern 1mu} - 1} \right)\)
Phương trình \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca % WGKbaacaGLOaGaayzkaaGaaiOoaiaaykW7caaMc8+aaSaaaeaacaWG % 4baabaGaaGymaaaacqGH9aqpdaWcaaqaaiaadMhacqGHRaWkcaaIXa % aabaGaaGymaaaacqGH9aqpdaWcaaqaaiaadQhaaeaacqGHsislcaaI % Xaaaaaaa!462B! \left( d \right):\,\,\frac{x}{1} = \frac{{y + 1}}{1} = \frac{z}{{ - 1}}\)
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 3