Cho hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh đều bằng \(2a.\) Tính bán kính \(R\) của mặt cầu ngoại tiếp hình chóp đã cho.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(O\) là tâm hình vuông \(ABCD\) và \(E\) là trung điểm \(SB.\)
Vì \(S.ABCD\) là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\)
Trong \(\left( {SBO} \right)\) kẻ đường trung trực của \(SB\) cắt \(SO\) tại \(I\), khi đó \(IA = IB = IC = ID = IS\) nên \(I\) là tâm mặt cầu ngoại tiếp hình chóp \(S.ABCD\) và bán kính mặt cầu là \(R = IS.\)
Ta có \(ABCD\) là hình vuông cạnh \(2a \Rightarrow BD = \sqrt {B{C^2} + C{D^2}} = 2a\sqrt 2 \Rightarrow BO = \frac{{BD}}{2} = a\sqrt 2 .\)
Ta có \(SA = SB = SC = SD = 2a\) (vì \(S.ABCD\) là hình chóp đều) nên \(SE = EB = \frac{{2a}}{2} = a\)
Xét tam giác \(SBO\) vuông tại \(O\) (vì \(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot OB\)) có \(SO = \sqrt {S{B^2} - O{B^2}} = \sqrt {4{a^2} - 2{a^2}} = a\sqrt 2 .\)
Ta có \(\Delta SEI\) đồng dạng với tam giác \(SOB\left( {g - g} \right) \Rightarrow \frac{{SI}}{{SB}} = \frac{{SE}}{{SO}} \Leftrightarrow IS = \frac{{SB.SE}}{{SO}} = \frac{{2a.a}}{{a\sqrt 2 }} = \sqrt 2 a.\)
Vậy bán kính \(R = a\sqrt 2 .\)
Chọn C.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Phan Bội Châu