Cho hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\). Biết \(\int\limits_{1}^{{{e}^{3}}}{\frac{f\left( \operatorname{lnx} \right)}{x}}dx=7, \int\limits_{0}^{\frac{\pi }{2}}{f\left( \cos x \right).\sin x}dx=3\). Tính \(\int\limits_{1}^{3}{\left( f\left( x \right)+2x \right)}dx\)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét tích phân \(A=\int\limits_{1}^{{{e}^{3}}}{\frac{f\left( \ln x \right)}{x}}dx\)
Đặt \(t=\ln x\Rightarrow dt=\frac{1}{x}dx\), đổi cận \(x=1\Rightarrow t=0, x={{e}^{3}}\Rightarrow t=3\)
Do đó \(A=\int\limits_{0}^{3}{f\left( t \right)dt}=\int\limits_{0}^{3}{f\left( x \right)dx}\)
Xét tích phân \(B=\int\limits_{0}^{\frac{\pi }{2}}{f\left( \cos x \right).\sin x}dx\)
Đặt \(u=\cos x\Rightarrow du=-\sin xdx\), đổi cận \(x=0\Rightarrow u=1, x=\frac{\pi }{2}\Rightarrow u=0\)
Do đó \(A=\int\limits_{1}^{0}{-f\left( u \right)du}=\int\limits_{0}^{1}{f\left( x \right)dx}\)
Xét \(\int\limits_{1}^{3}{\left( f\left( x \right)+2x \right)}dx=\int\limits_{1}^{3}{f\left( x \right)}dx+\int\limits_{1}^{3}{2x}dx=\int\limits_{0}^{3}{f\left( x \right)}dx-\int\limits_{0}^{1}{f\left( x \right)}dx+\left. {{x}^{2}} \right|_{1}^{3}=7-3+8=12\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Nguyễn Tất Thành lần 2