Cho hàm số \(f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ 1\,;2 \right]\) thỏa mãn \(\int\limits_{1}^{2}{{{\left( x-1 \right)}^{2}}f\left( x \right)\text{d}x}=-\frac{1}{3}\), \(f\left( 2 \right)=0\) và \(\int\limits_{1}^{2}{{{\left[ {f}'\left( x \right) \right]}^{2}}\text{d}x}=7\). Tính tích phân của \(I=\int\limits_{1}^{2}{f\left( x \right)\text{d}x}\)?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐặt \(\left\{ \begin{align} & u=f\left( x \right) \\ & \text{d}v={{\left( x-1 \right)}^{2}}\text{d}x \\ \end{align} \right.\)\(\Rightarrow \left\{ \begin{align} & \text{d}u={f}'\left( x \right)\text{d}x \\ & v=\frac{{{\left( x-1 \right)}^{3}}}{3} \\ \end{align} \right.\)
Khi đó, \(\int\limits_{1}^{2}{{{\left( x-1 \right)}^{2}}f\left( x \right)\text{d}x}\)\( =\left. \frac{{{\left( x-1 \right)}^{3}}f\left( x \right)}{3} \right|_{1}^{2}-\)\( \frac{1}{3}\int\limits_{1}^{2}{{{\left( x-1 \right)}^{3}}{f}'\left( x \right)\text{d}x}\)
\(\Rightarrow -\frac{1}{3}\)\( =-\frac{1}{3}\int\limits_{1}^{2}{{{\left( x-1 \right)}^{3}}{f}'\left( x \right)\text{d}x}\)
\(\Rightarrow \int\limits_{1}^{2}{{{\left( x-1 \right)}^{3}}{f}'\left( x \right)\text{d}x}=1\).
Ta lại có:
\(\left\{ \begin{align} & \int\limits_{1}^{2}{{{\left[ {f}'\left( x \right) \right]}^{2}}\text{d}x}=7 \\ & \int\limits_{1}^{2}{14{{\left( x-1 \right)}^{3}}{f}'\left( x \right)\text{d}x}=14 \\ & \int\limits_{1}^{2}{49{{\left( x-1 \right)}^{6}}\text{d}x}=\left. 7{{\left( x-1 \right)}^{7}} \right|_{1}^{2}=7 \\ \end{align} \right.\)
\(\Rightarrow \int\limits_{1}^{2}{{{\left[ {f}'\left( x \right) \right]}^{2}}\text{d}x}\)\( -\int\limits_{1}^{2}{14{{\left( x-1 \right)}^{3}}{f}'\left( x \right)\text{d}x}+\int\limits_{1}^{2}{49{{\left( x-1 \right)}^{6}}\text{d}x}=0\)
\(\Rightarrow \int\limits_{1}^{2}{{{\left[ {f}'\left( x \right) -7{{\left( x-1 \right)}^{3}} \right]}^{2}}\text{d}x}=0\) \(\left( 1 \right)\),
mà \(\int\limits_{1}^{2}{{{\left[ {f}'\left( x \right) -7{{\left( x-1 \right)}^{3}} \right]}^{2}}\text{d}x}\ge 0\).
nên \(\left( 1 \right)\Rightarrow {f}'\left( x \right) -7{{\left( x-1 \right)}^{3}}=0\)\( \Rightarrow {f}'\left( x \right)\)\( =7{{\left( x-1 \right)}^{3}}\)\( \Rightarrow f\left( x \right)\)\( =\frac{7{{\left( x-1 \right)}^{4}}}{4}+C\).
Mà \(f\left( 2 \right)=0\)\( \Leftrightarrow \frac{7}{4}+C=0\)\( \Leftrightarrow C=-\frac{7}{4}\)\( \Rightarrow f\left( x \right)\)\( =\frac{7}{4}\left[ {{\left( x-1 \right)}^{4}}-1 \right]\).
\(\Rightarrow I\)\( =\int\limits_{1}^{2}{f\left( x \right)\text{d}x}\)\( =\frac{7}{4}\int\limits_{1}^{2}{\left[ {{\left( x-1 \right)}^{4}}-1 \right]\text{d}x}\)\( =\left. \frac{7}{4}\left[ \frac{{{\left( x-1 \right)}^{5}}}{5}-x \right] \right|_{1}^{2}=-\frac{7}{5}\).
Vậy \(I=-\frac{7}{5}\).
Chọn B
Đề thi thử Tốt nghiệp THPT môn Toán năm 2023-2024
Trường THPT Trần Hữu Trang