Cho hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx + d\left( {a,b,c,d \in R} \right)\) có đồ thị như hình vẽ. Đồ thị hàm số \(g\left( x \right) = \frac{{\left( {{x^2} + 4x + 3} \right)\sqrt {{x^2} + x} }}{{x\left[ {{{\left( {f\left( x \right)} \right)}^2} - 2f\left( x \right)} \right]}}\) có bao nhiêu đường tiệm cận đứng?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐiều kiện: \(\left\{ \begin{array}{l}
x \ne 0\\
{x^2} + x \ge 0\\
{\left( {f\left( x \right)} \right)^2} - 2f\left( x \right) \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
\left[ \begin{array}{l}
x > 0\\
x \le - 1
\end{array} \right.\\
\left[ \begin{array}{l}
f\left( x \right) \ne 0\\
f\left( x \right) \ne 2
\end{array} \right.
\end{array} \right.\)
Từ đồ thị hàm số \(y=f(x)\) ta thấy phương trình \(f(x)=0\) có nghiệm x = - 3 (bội 2) và nghiệm đơn \(x = {x_0} \in \left( { - 1;0} \right)\) nên ta viết lại \(f\left( x \right) = a{\left( {x + 3} \right)^2}\left( {x - {x_0}} \right)\)
Khi đó \(g\left( x \right) = \frac{{\left( {{x^2} + 4x + 3} \right)\sqrt {{x^2} + x} }}{{x\left[ {{{\left( {f\left( x \right)} \right)}^2} - 2f\left( x \right)} \right]}} = \frac{{\left( {{x^2} + 4x + 3} \right)\sqrt {{x^2} + x} }}{{x.f\left( x \right)\left[ {f\left( x \right) - 2} \right]}}\)
Dựa vào đồ thị ta cũng thấy, đường thẳng y = 2 cắt đồ thị hàm số \(y=f(x)\) tại ba điểm phân biệt \(x = - 1,x = {x_1} \in \left( { - 3; - 1} \right),x = {x_2} < - 3\) nên ta viết lại \(f\left( x \right) - 2 = a\left( {x + 1} \right)\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)\)
Khi đó \(g\left( x \right) = \frac{{\left( {x + 1} \right)\left( {x + 3} \right)\sqrt {{x^2} + x} }}{{x.a{{\left( {x + 3} \right)}^2}.\left( {x - {x_0}} \right).a\left( {x + 1} \right)\left( {x - {x_1}} \right)\left( {x - {x_2}} \right)}}\)
\( = \frac{{\sqrt {{x^2} + x} }}{{{a^2}x\left( {x + 3} \right)\left( {x - {x_0}} \right)\left( {x - {x_1}} \right)\left( {x - 2} \right)}}\)
Dễ thấy \(x = {x_0} \in \left( { - 1;0} \right)\) nên ta không xét giới hạn của hàm số tại điểm \(x_0\)
Ta có:
+) \(\mathop {\lim }\limits_{x \to {0^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {0^ + }} = \frac{{\sqrt {x + 1} }}{{{a^2}\sqrt x \left( {x + 3} \right)\left( {x - {x_0}} \right)\left( {x - {x_1}} \right)\left( {x - 2} \right)}} = + \infty \)
\( \Rightarrow x = 0\) là đường TCĐ của đồ thị hàm số \(y=g(x)\)
+) \(\mathop {\lim }\limits_{x \to 3} g\left( x \right) = \mathop {\lim }\limits_{x \to {x_1}} g\left( x \right) = \mathop {\lim }\limits_{x \to {x_2}} g\left( x \right) = + \infty \)
\( \Rightarrow x\) Các đường thẳng \(x = - 3,x = {x_1},x = {x_2}\) đều là các đường tiệm cận đứng của đồ thị hàm số \(y=g(x)\)
Vậy đồ thị hàm số \(y=g(x)\) có tất cả 4 đường tiệm cận đứng.
Đề thi thử THPT QG môn Toán năm 2019
Trường THPT Chuyên Thái Nguyên lần 2