Cho hai hàm số \(f\left( x \right),\,\,g\left( x \right)\) có đạo hàm liên tục trên R. Xét các mệnh đề sau
1) \(k.\int{f(x)\,\text{d}x=\int{k.f(x)\,\text{d}x}}\), với k là hằng số thực bất kì.
2) \(\int{\left[ f\left( x \right)+g\left( x \right) \right]}\,\text{d}x=\int{f\left( x \right)\,\text{d}x+\int{g\left( x \right)\text{d}x}}\)
3) \(\int{\left[ f\left( x \right)g\left( x \right) \right]}\,\text{d}x=\int{f\left( x \right)\text{d}x.\int{g\left( x \right)\text{d}x.}}\)
4) \(\int{{f}'\left( x \right)g\left( x \right)\text{d}x+\int{f\left( x \right){g}'\left( x \right)\text{d}x=f\left( x \right)g\left( x \right)}}\).
Tổng số mệnh đề đúng là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiMệnh đề đúng là mệnh đề 2
Thật vậy ta có \({{\left( \int{f\left( x \right)\text{d}x+\int{g\left( x \right)\text{d}x}} \right)}^{\prime }}={{\left( \int{f\left( x \right)\text{d}x} \right)}^{\prime }}+{{\left( \int{g\left( x \right)\text{d}x} \right)}^{\prime }}=f\left( x \right)+g\left( x \right)\)
Mệnh đề 1 sai
Nếu k=0 ta có VT=0; \(VP=\int{0dx}=C\ne VP\)
Mệnh đề 3 sai
Phản ví dụ chọn \(f\left( x \right)=1; g\left( x \right)=0\)
suy ra \(VT=\int{\left[ f\left( x \right)g\left( x \right) \right]}\,\text{d}x=\int{0dx}=C;\,VP=\int{f\left( x \right)\text{d}x.\int{g\left( x \right)\text{d}x}=\int{dx}.\int{0dx}=(x+{{C}_{1}})}.C2\)
Mệnh đề 4 sai vì \(VT=\int{\left[ {f}'\left( x \right)g\left( x \right)+f\left( x \right){g}'\left( x \right) \right]\text{d}x}=\int{{{\left[ f\left( x \right)g\left( x \right) \right]}^{\prime }}\text{d}x}=f\left( x \right)g\left( x \right)+C\ne VP\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Mạc Đĩnh Chi lần 2