Cho z, w \(\in \mathbb{C}\) thỏa \(\left| z+2 \right|=\left| \overline{z} \right|,\ \left| z+i \right|=\left| z-i \right|,\ \left| w-2-3i \right|\le 2\sqrt{2},\left| \overline{w}-5+6i \right|\le 2\sqrt{2}\). Giá trị lớn nhất \(\left| z-w \right|\) bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGiả sử \(z=x+yi,\ \left( x,\,y\in \mathbb{R} \right)\). Gọi \(M\left( x\,;\,y \right)\) là điểm biểu diễn của z trên \(mp\left( Oxy \right)\).
Ta có:
+) \(\left| z+2 \right|=\left| \overline{z} \right|\Leftrightarrow {{\left( x+2 \right)}^{2}}+{{y}^{2}}={{x}^{2}}+{{y}^{2}}\Leftrightarrow x+1=0\quad \left( {{d}_{1}} \right)\).
+) \(\left| z+i \right|=\left| z-i \right|\Leftrightarrow {{x}^{2}}+{{\left( y+1 \right)}^{2}}={{x}^{2}}+{{\left( y-1 \right)}^{2}}\Leftrightarrow y=0\ \ \ \left( {{d}_{2}} \right)\).
Khi đó \(M=\left( {{d}_{1}} \right)\cap \left( {{d}_{2}} \right)\Rightarrow M\left( -1\,;\,0 \right)\).
Giả sử \(w=a+bi,\ \left( a,\,b\in \mathbb{R} \right)\). Gọi \(N\left( a\,;\,b \right)\) là điểm biểu diễn của w trên \(mp\left( Oxy \right)\).
Ta có:
+) \(\left| w-2-3i \right|\le 2\sqrt{2}\Leftrightarrow {{\left( a-2 \right)}^{2}}+{{\left( b-3 \right)}^{2}}\le 8\quad \left( {{C}_{1}} \right)\).
+) \(\left| \overline{w}-5+6i \right|\le 2\sqrt{2}\Leftrightarrow {{\left( a-5 \right)}^{2}}+{{\left( b-6 \right)}^{2}}\le 8\quad \left( {{C}_{2}} \right)\).
Với \(\left( {{C}_{1}} \right)\) là hình tròn tâm \(I\left( 2\,;\,3 \right)\), bán kính \({{R}_{1}}=2\sqrt{2}\);
\(\left( {{C}_{2}} \right)\) là hình tròn tâm \(J\left( 5\,;\,6 \right)\), bán kính \({{R}_{2}}=2\sqrt{2}\).
Khi đó N thuộc miền chung của hai hình tròn \(\left( {{C}_{1}} \right)\) và \(\left( {{C}_{2}} \right)\) ( hình vẽ).
Ta có: \(\left| z-w \right|=MN\).
Ta có: \(\overrightarrow{MI}=\left( 3\,;\,3 \right);\ \overrightarrow{IJ}=\left( 3\,;\,3 \right)\Rightarrow \overrightarrow{MI}=\ \overrightarrow{IJ}\).
Như vậy ba điểm \(M,\,I,\,J\) thẳng hàng.
Do đó: MN lớn nhất khi và chỉ khi \(N=MJ\cap \left( {{C}_{1}} \right)\Rightarrow M{{N}_{\max }}=MI+IN=3\sqrt{2}+2\sqrt{2}=5\sqrt{2}\).
Đề thi thử THPT QG năm 2021 môn Toán
Trường THPT Mạc Đĩnh Chi lần 2