Cho hai hàm số \(f\left( x \right) = a{x^3} + b{x^2} + cx - \frac{1}{2}\) và \(g\left( x \right) = d{x^2} + ex + 1\) \(\left( {a,b,c,d,e \in R} \right)\). Biết rằng đồ thị của hàm số y = f(x) và y = g(x) cắt nhau tại ba điểm có hoành độ lần lượt là -3; -1; 1 (tham khảo hình vẽ). Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiDiện tích hình phẳng cần tìm là
\(\begin{array}{l}
S = \int\limits_{ - 3}^{ - 1} {\left[ {f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x} + \int\limits_{ - 1}^1 {\left[ {g\left( x \right) - f\left( x \right)} \right]{\rm{d}}x} \\
= \int\limits_{ - 3}^{ - 1} {\left[ {a{x^3} + \left( {b - d} \right){x^2} + \left( {c - e} \right)x - \frac{3}{2}} \right]{\rm{d}}x} - \int\limits_{ - 1}^1 {\left[ {a{x^3} + \left( {b - d} \right){x^2} + \left( {c - e} \right)x - \frac{3}{2}} \right]{\rm{d}}x}
\end{array}\).
Trong đó phương trình \(a{x^3} + \left( {b - d} \right){x^2} + \left( {c - e} \right)x - \frac{3}{2} = 0\) (*) là phương trình hoành độ giao điểm của hai đồ thị hàm số y = f(x) và y = g(x).
Phương trình (*) có nghiệm -3; -1; 1 nên
\(\left\{ \begin{array}{l}
- 27a + 9\left( {b - d} \right) - 3\left( {c - e} \right) - \frac{3}{2} = 0\\
- a + \left( {b - d} \right) - \left( {c - e} \right) - \frac{3}{2} = 0\\
a + \left( {b - d} \right) + \left( {c - e} \right) - \frac{3}{2} = 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
- 27a + 9\left( {b - d} \right) - 3\left( {c - e} \right) = \frac{3}{2}\\
- a + \left( {b - d} \right) - \left( {c - e} \right) = \frac{3}{2}\\
a + \left( {b - d} \right) + \left( {c - e} \right) = \frac{3}{2}
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
a = \frac{1}{2}\\
\left( {b - d} \right) = \frac{3}{2}\\
\left( {c - e} \right) = - \frac{1}{2}
\end{array} \right.\).
Vậy \(S = \int\limits_{ - 3}^{ - 1} {\left[ {\frac{1}{2}{x^3} + \frac{3}{2}{x^2} - \frac{1}{2}x - \frac{3}{2}} \right]{\rm{d}}x} - \int\limits_{ - 1}^1 {\left[ {\frac{1}{2}{x^3} + \frac{3}{2}{x^2} - \frac{1}{2}x - \frac{3}{2}} \right]{\rm{d}}x} = 2 - \left( { - 2} \right) = 4\).