Một chất điểm A xuất phát từ O, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật \(v(t) = \frac{1}{{180}}{t^2} + \frac{{11}}{{18}}t\,\left( {m/s} \right)\), trong đó t (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một chất điểm B cũng xuất phát từ O, chuyển động thẳng cùng hướng với A nhưng chậm hơn 5 giây so với A và có gia tốc bằng a (m/s2) (a là hằng số). Sau khi B xuất phát được 10 giây thì đuổi kịp A. Vận tốc của B tại thời điểm đuổi kịp A bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai+) Từ đề bài, ta suy ra: tính từ lúc chất điểm A bắt đầu chuyển động cho đến khi bị chất điểm B bắt kịp thì A đi được 15 giây, B đi được 10 giây.
+) Biểu thức vận tốc của chất điểm B có dạng \({v_B}\left( t \right) = \int {a{\rm{d}}t} = at + C\), lại có \({v_B}\left( 0 \right) = 0\) nên \({v_B}\left( t \right) = at\).
+) Từ lúc chất điểm A bắt đầu chuyển động cho đến khi bị chất điểm B bắt kịp thì quãng đường hai chất điểm đi được là bằng nhau. Do đó
\(\int\limits_0^{15} {\left( {\frac{1}{{180}}{t^2} + \frac{{11}}{{18}}t} \right){\rm{d}}t} = \int\limits_0^{10} {at{\rm{d}}t} \Leftrightarrow 75 = 50a \Leftrightarrow a = \frac{3}{2}\).
Từ đó, vận tốc của B tại thời điểm đuổi kịp A bằng \({v_B}\left( {10} \right) = \frac{3}{2}.10 = 15(m/s)\).