Cho f,g là hai hàm liên tục trên [1;3] thỏa điều kiện \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaWaam % WaaeaacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaey4kaSIa % aG4maiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawUfaca % GLDbaacaqGKbGaamiEaaWcbaGaaGymaaqaaiaaiodaa0Gaey4kIipa % kiabg2da9iaaigdacaaIWaaaaa!4925! \int\limits_1^3 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]{\rm{d}}x} = 10\) đồng thời \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaWaam % WaaeaacaaIYaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiab % gkHiTiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawUfaca % GLDbaacaqGKbGaamiEaaWcbaGaaGymaaqaaiaaiodaa0Gaey4kIipa % kiabg2da9iaaiAdaaaa!4879! \int\limits_1^3 {\left[ {2f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x} = 6\). Tính \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapehabaWaam % WaaeaacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaey4kaSIa % am4zamaabmaabaGaamiEaaGaayjkaiaawMcaaaGaay5waiaaw2faai % aabsgacaWG4baaleaacaaIXaaabaGaaG4maaqdcqGHRiI8aaaa!45E3! \int\limits_1^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]{\rm{d}}x} \).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapedabaWaam % WaaeaacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaey4kaSIa % aG4maiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawUfaca % GLDbaacaqGKbGaamiEaaWcbaGaaGymaaqaaiaaiodaa0Gaey4kIipa % kiabg2da9iaaigdacaaIWaaaaa!48E5! \int_1^3 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]{\rm{d}}x} = 10\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsDiBpaape % dabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaabsgacaWG % 4baaleaacaaIXaaabaGaaG4maaqdcqGHRiI8aOGaey4kaSIaaG4mam % aapedabaGaam4zamaabmaabaGaamiEaaGaayjkaiaawMcaaiaabsga % caWG4baaleaacaaIXaaabaGaaG4maaqdcqGHRiI8aOGaeyypa0JaaG % ymaiaaicdadaqadaqaaiaaigdaaiaawIcacaGLPaaaaaa!5122! \Leftrightarrow \int_1^3 {f\left( x \right){\rm{d}}x} + 3\int_1^3 {g\left( x \right){\rm{d}}x} = 10\left( 1 \right)\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapedabaWaam % WaaeaacaaIYaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiab % gkHiTiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawUfaca % GLDbaacaqGKbGaamiEaaWcbaGaaGymaaqaaiaaiodaa0Gaey4kIipa % kiabg2da9iaaiAdaaaa!4839! \int_1^3 {\left[ {2f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x} = 6\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsDiBlaaik % dadaWdXaqaaiaadAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacaqG % KbGaamiEaaWcbaGaaGymaaqaaiaaiodaa0Gaey4kIipakiabgkHiTm % aapedabaGaam4zamaabmaabaGaamiEaaGaayjkaiaawMcaaiaabsga % caWG4baaleaacaaIXaaabaGaaG4maaqdcqGHRiI8aOGaeyypa0JaaG % OnaiaaykW7daqadaqaaiaaikdaaiaawIcacaGLPaaaaaa!5202! \Leftrightarrow 2\int_1^3 {f\left( x \right){\rm{d}}x} - \int_1^3 {g\left( x \right){\rm{d}}x} = 6\,\left( 2 \right)\)
Giải hệ (1) ; (2) ta được \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiabgsDiBpaape % dabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiaabsgacaWG % 4baaleaacaaIXaaabaGaaG4maaqdcqGHRiI8aOGaeyypa0JaaGinai % aacUdacaaMc8+aa8qmaeaacaWGNbWaaeWaaeaacaWG4baacaGLOaGa % ayzkaaGaaeizaiaadIhaaSqaaiaaigdaaeaacaaIZaaaniabgUIiYd % GccqGH9aqpcaaIYaaaaa!5093! \Leftrightarrow \int_1^3 {f\left( x \right){\rm{d}}x} = 4;\,\int_1^3 {g\left( x \right){\rm{d}}x} = 2\) suy ra \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Lq-Jirpepeea0-as0Fb9pgea0lXxe9vr0-vr % 0-vqpWqaaeaabiGaciaacaqabeaadaqaaqaaaOqaamaapedabaWaam % WaaeaacaWGMbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaey4kaSIa % am4zamaabmaabaGaamiEaaGaayjkaiaawMcaaaGaay5waiaaw2faai % aabsgacaWG4baaleaacaaIXaaabaGaaG4maaqdcqGHRiI8aOGaeyyp % a0JaaGOnaaaa!4773! \int_1^3 {\left[ {f\left( x \right) + g\left( x \right)} \right]{\rm{d}}x} = 6\)
Đề thi thử tốt nghiệp THPT QG môn Toán năm 2020
Tuyển chọn số 3