Cho điểm \(M\left( {1;2;5} \right)\), mặt phẳng \(\left( P \right)\) đi qua điểm \(M\) cắt trục tọa độ \(Ox;Oy;Oz\) tại \(A,B,C\) sao cho \(M\) là trực tâm của tam giác \(ABC.\) Phương trình mặt phẳng \(\left( P \right)\) là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(A\left( {a;0;0} \right);B\left( {0;b;0} \right);C\left( {0;0;c} \right)\,\left( {a;b;c \ne 0} \right)\)
Mặt phẳng \(\left( P \right)\) cắt trục tọa độ \(Ox;Oy;Oz\) tại \(A,B,C\) có phương trình \(\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1\)
Vì \(M \in \left( P \right) \Rightarrow \dfrac{1}{a} + \dfrac{2}{b} + \dfrac{5}{c} = 1\) (*)
Ta có \(\overrightarrow {AM} = \left( {1 - a;2;5} \right);\overrightarrow {BC} = \left( {0; - b;c} \right);\overrightarrow {BM} = \left( {1;2 - b;5} \right);\overrightarrow {AC} = \left( { - a;0;c} \right)\)
Vì M là trực tâm tam giác \(ABC \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AM} .\overrightarrow {BC} = 0\\\overrightarrow {BM} .\overrightarrow {AC} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2b + 5c = 0\\ - a + 5c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = \dfrac{{5c}}{2}\\a = 5c\end{array} \right.\)
Thay vào (*) ta được \(\dfrac{1}{{5c}} + \dfrac{2}{{\dfrac{{5c}}{2}}} + \dfrac{5}{c} = 1 \Leftrightarrow c = 6 \Rightarrow a = 30;b = 15\)
Phương trình mặt phẳng \(\left( P \right):\,\dfrac{x}{{30}} + \dfrac{y}{{15}} + \dfrac{z}{6} = 1 \Leftrightarrow x + 2y + 5z - 30 = 0\)
Chọn A.
Đề thi thử THPT QG năm 2022 môn Toán
Trường THPT Huỳnh Văn Nghệ