Gọi S là tập tất cả các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số \(y = \left| {\dfrac{1}{4}{x^4} - \dfrac{{19}}{2}{x^2} + 30x + m - 20} \right|\) trên đoạn \(\left[ {0;2} \right]\) không vượt quá 20. Tổng các phần tử của S bằng
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét hàm số \(g\left( x \right) = \dfrac{1}{4}{x^4} - \dfrac{{19}}{2}{x^2} + 30x + m - 20\)
\(\begin{array}{l}g'\left( x \right) = {x^3} - 19x + 30 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = 3\\x = - 5\end{array} \right.\end{array}\)
\(g\left( 2 \right) = 6 + m;g\left( 0 \right) = m - 20\)
Bảng biến thiên:
Hàm số đồng biến trên \(\left( {0;2} \right)\)
Do \(m + 6 \ge m - 20\) nên
\( - 20 \le g\left( x \right) \le 20\forall x \in \left[ {0;2} \right]\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}m + 6 \le 20\\m - 20 \ge - 20\end{array} \right.\\ \Leftrightarrow 0 \le m \le 14\end{array}\)
Tổng tất cả các giá trị của m thỏa mãn đề bài là
\(\dfrac{{14.15}}{2} = 105\)
Chọn B