Đề thi HK1 môn Toán 10 Cánh Diều năm 2022-2023
Trường THPT Nguyễn Trung Trực
-
Câu 1:
Cho đồ thị hàm số y=x3y=x3 như hình bên:
Khẳng định nào sau đây sai?
A. Hàm số đồng biến trên khoảng (−∞;0).
B. Hàm số đồng biến trên khoảng (0;+∞).
C. Hàm số đồng biến trên khoảng (−∞;+∞).
D. Hàm số đồng biến tại gốc tọa độ O.
-
Câu 2:
Hàm số y=9x−1x+6 xác định khi nào?
A. 9x−1≥0.
B. x+6≥0.
C. 9x−1≠0.
D. x+6≠0.
-
Câu 3:
Đồ thị hàm số y=3x2+4x−1 nhận đường thẳng nào dưới đây làm trục đối xứng?
A. x=43
B. y=23
C. x=−23
D. x=−13
-
Câu 4:
Hàm số y=2x2+16x−25 đồng biến trên khoảng:
A. (−∞;−4).
B. (−∞;8).
C. (−6;+∞).
D. (−4;+∞).
-
Câu 5:
A. 1
B. 2
C. 0
D. Vô số
-
Câu 6:
Cho lục giác đều ABCDEF tâm O. Số các vectơ khác vectơ không, cùng phương với →OC có điểm đầu và điểm cuối là các đỉnh của lục giác là:
A. 4
B. 6
C. 7
D. 9
-
Câu 7:
Cho ba điểm M,N,P phân biệt. Đẳng thức nào sau đây sai?
A. →PM+→MN=→PN.
B. →MP−→MN=→NP.
C. →NM−→NP=→PM.
D. →NM+→PM=→NP.
-
Câu 8:
Cho hai vector →a,→b thỏa |→a|=2,|→b|=3,(→a;→b)=1200. Tính tích vô hướng →a.→b.
A. −3.
B. 3.
C. −3√3.
D. 3√3.
-
Câu 9:
Cho hàm số f(x)={2√x+2−3x−1x≥2x2+1x<2. Tính P=f(2)+f(−2).
A. P=83
B. P=4
C. P=6
D. P=53
-
Câu 10:
Bảng biến thiên sau là của hàm số nào?
A. y=x2+2x−1
B. y=x2−2x+2
C. y=2x2−4x+4
D. y=−3x2+6x−1
-
Câu 11:
Đường thẳng d:y=x+3 cắt parabol (P):y=3x2+10x+3 tại hai điểm có hoành độ lần lượt là:
A. x=−13,x=3.
B. x=−13,x=−3.
C. x=−3,x=3.
D. x=−3,x=0.
-
Câu 12:
Một vật được ném lên trên cao và độ cao của nó so với mặt đất được cho bởi công thức h(t)=3+10t−2t2(m), với t là thời gian tính bằng giây (s) kể từ lúc bắt đầu ném. Độ cao cực đại mà vật đó có thể đạt được so với mặt đất bằng bao nhiêu mét?
A. 312
B. 332
C. 15
D. 16
-
Câu 13:
Cho f(x)=mx2−2x−1. Xác định m để f(x)<0 với mọi x∈R.
A. m<−1
B. m<0
C. −1<m<0
D. m<1 và m≠0.
-
Câu 14:
Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình x2−8x+7≥0?
A. (−∞;0]
B. [8;+∞)
C. (−∞;1]
D. [6;+∞)
-
Câu 15:
Giải phương trình sau √x+7=x+1
A. x=1.
B. x=2.
C. x=−3.
D. x=3.
-
Câu 16:
Cho hình thoi ABCD tâm O, cạnh bằng a, và góc A bằng 600. Kết luận nào đúng?
A. |→OA|=a
B. |→OA|=a√32
C. |→OA|=a√22
D. |→OA|=|→OB|
-
Câu 17:
Cho tam giác ABC.Tập hợp các điểm Mthỏa mãn|→MB−→MC|=|→BM−→BA| là?
A. đường thẳng AB.
B. trung trực đoạn BC.
C. đường tròn tâm A, bán kính BC.
D. đường thẳng qua A và song song vơi BC.
-
Câu 18:
Cho tam giác ABC có AM là đường trung tuyến. Gọi I là trung điểm của AM. Trong các mệnh đề sau, mệnh đề nào đúng?
A. →IA+→IB+→IC=→0
B. →IA+2→IB+2→IC=→0
C. 2→IA+→IB+→IC=→0
D. 2→IA−→IB−→IC=→0
-
Câu 19:
Cho đoạn thẳng AB và M là một điểm nằm trên đoạn AB sao cho AM=15AB. Giá trị của k để có đẳng thức →AM=k.→AB là:
A. k=−15
B. k=15
C. k=5
D. k=−5
-
Câu 20:
Cho hai vectơ →a và →b khác →0. Xác định góc α giữa hai vectơ →a và →b biết →a.→b=−|→a|.|→b|.
A. α=00.
B. α=450.
C. α=900.
D. α=1800.
-
Câu 21:
Tìm tất cả các giá trị thực của tham số m để hàm số y=2x+1x2−2x+m−2 xác định trên R.
A. m>3
B. m≥3
C. m<3
D. m≤3
-
Câu 22:
Parabol y=ax2+bx+c đi qua A(0;-1), B(1;-1), C(-1;1) có phương trình là:
A. y=x2−x+1
B. y=x2−x−1
C. y=x2+x−1
D. y=x2+x+1
-
Câu 23:
Giá trị dương lớn nhất để hàm số y=√5−4x−x2 xác định là:
A. 1
B. 2
C. 3
D. 4
-
Câu 24:
Cho tam giác ABC nhọn, có H là trực tâm. ΔBHC nội tiếp (I,R). Gọi M là trung điểm BC. Khẳng định nào sau đây là đúng:
A. →MB,→MCcùng hướng.
B. →HA,→IMcùng hướng.
C. →MB,→BCcùng hướng.
D. Cả A, B, C đều sai.
-
Câu 25:
Cho hình bình hành ABCD, →u=→AC+→BD. Khẳng định nào sau đây đúng?
A. →u cùng hướng với →AB
B. →u cùng hướng với →AD
C. →u ngược hướng với →AB
D. →u ngược hướng với →AD
-
Câu 26:
Cho tam giác ABC, có M∈BC sao cho →MB=3→MC. Hãy phân tích →AM theo hai vectơ →u=→AB,→v=→AC.
A. →AM=12→u+32→v
B. →AM=−12→u+32→v
C. →AM=−12→u−32→v
D. →AM=12→u−32→v
-
Câu 27:
Cho hình bình hành ABCD có AB=8cm, AD=12cm , góc ∠ABC nhọn và diện tích tam giác ABC bằng 27cm2 Khi đó cos(→AB,→BC) bằng
A. cos(→AB,→BC)=−5√716
B. cos(→AB,→BC)=5√716
C. cos(→AB,→BC)=2√716
D. cos(→AB,→BC)=−2√716
-
Câu 28:
Cho tam giác ABC đều, cạnh bằng a, điểm M thuộc đường tròn ngoại tiếp tam giác ABC và thỏa mãn →MA.→MB+→MB.→MC+→MC.→MA=a24. Bán kính đường tròn đó là
A. R=a
B. R=a4
C. R=a2
D. R=3a2
-
Câu 29:
Cho hàm số y=ax2+bx+c,a≠0, biết hàm số đạt giá trị lớn nhất trên R bằng 4 khi x=−1 và tổng bình phương các nghiệm của phương trình y=0 bằng 10. Hàm số đã cho là hàm số nào sau đây?
A. y=x2+2x−3.
B. y=−2x2−4x+2.
C. y=−x2−2x+1.
D. y=−x2−2x+3.
-
Câu 30:
Cho hàm số y=ax2+bx+c có đồ thị như hình bên dưới. Khẳng định nào sau đây đúng?
A. a>0,b<0,c<0.
B. a>0,b<0,c>0.
C. a>0,b>0,c>0.
D. a<0,b<0,c<0.
-
Câu 31:
Tam giác ABC có AB = 4, BC = 6, AC=2√7. Điểm M thuộc đoạn BC sao cho MC = 2MB. Tính độ dài cạnh AM.
A. AM=3√2.
B. AM=4√2.
C. AM=2√3.
D. AM=3.
-
Câu 32:
Cho mệnh đề chứa biến chia hết cho 5”. Mệnh đề nào sau đây sai?
A. P(2)
B. P(4)
C. P(3)
D. P(7)
-
Câu 33:
Cặp số (1;−1) là nghiệm của bất phương trình nào sau đây?
A. x+y−3>0
B. −x−y<0.
C. x+3y+1<0.
D. −x−3y−1<0
-
Câu 34:
Cho góc α với 00<α<1800. Tính giá trị của cosα, biết tanα=−2√2.
A. −13.
B. 13.
C. 2√23.
D. √23.
-
Câu 35:
Một ca nô xuất phát từ cảng A, chạy theo hướng đông với vận tốc 50 km/h. Cùng lúc đó, một tàu cá, xuất phát từ A, chạy theo hướng N30°E với vận tốc 40 km/h. Sau 3 giờ, hai tàu cách nhau bao nhiêu kilômét?
A. 135,7km.
B. 237,5km.
C. 110km.
D. 137,5km.
-
Câu 36:
Cho tam giác ABC và điểm M thỏa mãn điều kiện →MA−→MB+→MC=→0. Mệnh đề nào sau đây sai?
A. MABC là hình bình hành.
B. →AM+→AB=→AC.
C. →BA+→BC=→BM.
D. →MA=→BC.
-
Câu 37:
Cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?
A. →AC+→BD=2→BC
B. →AC+→BC=→AB
C. →AC−→BD=2→CD
D. →AC−→AD=→CD
-
Câu 38:
Cho tam giác OAB vuông cân tại O, cạnh OA=a. Khẳng định nào sau đây sai?
A. |3→OA+4→OB|=5a
B. |2→OA|+|3→OB|=5a
C. |7→OA−2→OB|=5a
D. |11→OA|−|6→OB|=5a
-
Câu 39:
Cho tam giác ABC có BC=a,CA=b,AB=c. Gọi M là trung điểm cạnh BC. Tính →AM.→BC.
A. →AM.→BC=b2−c22.
B. →AM.→BC=c2+b22.
C. →AM.→BC=c2+b2+a23.
D. →AM.→BC=c2+b2−a22.
-
Câu 40:
Cho hình vuông ABCD cạnh a. Tính P=(→AB+→AC).(→BC+→BD+→BA).
A. P=2√2a.
B. P=2a2.
C. P=a2.
D. P=−2a2.