Với các giá trị nào của tham số m thì hàm số \(y = \sqrt {\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + 3\left( {m - 2} \right)} \) có tập xác định là \(D = \mathbb{R}\)?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiHàm số xác định \( \Leftrightarrow \left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + 3\left( {m - 2} \right) \ge 0\)
TH1 : Với \(m = 1 \Rightarrow y = \sqrt { - 4x - 3} \) xác định khi \(x \le - \frac{3}{4} \ne \mathbb{R} \Rightarrow \) Loại
TH2 : Với \(m \ne 1\).
Hàm số \(y = \sqrt {\left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + 3\left( {m - 2} \right)} \) có tập xác định là \(D = \mathbb{R}\)
\(\begin{array}{l} \Leftrightarrow \left( {m - 1} \right){x^2} - 2\left( {m + 1} \right)x + 3\left( {m - 2} \right) \ge 0\;\;\forall x\\ \Leftrightarrow \left\{ \begin{array}{l}m - 1 > 0\\\Delta ' = {\left( {m + 1} \right)^2} - 3\left( {m - 1} \right)\left( {m - 2} \right) \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 1\\{m^2} + 2m + 1 - 3{m^2} + 9m - 6 \le 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m > 1\\ - 2{m^2} + 11m - 5 \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 1\\\left( {m - 5} \right)\left( {2m - 1} \right) \ge 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m > 1\\\left[ \begin{array}{l}m \ge 5\\m \le \frac{1}{2}\end{array} \right.\end{array} \right. \Leftrightarrow m \ge 5.\end{array}\)
Vậy với \(m \ge 5\) thỏa mãn yêu cầu đề bài.
Chọn A.