Nghiệm của hệ phương trình \(\left\{ \begin{array}{l}x\sqrt 2 - y\sqrt 3 = 1\\x + y\sqrt 3 = \sqrt 2 \end{array} \right.\) là:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo sai\(\left\{ \begin{array}{l}x\sqrt 2 - y\sqrt 3 = 1\\x + y\sqrt 3 = \sqrt 2 \end{array} \right. \)\(\Leftrightarrow \left\{ \begin{array}{l}\left( {\sqrt 2 - y\sqrt 3 } \right)\sqrt 2 - y\sqrt 3 = 1\\x = \sqrt 2 - y\sqrt 3 \end{array} \right. \\\Leftrightarrow \left\{ \begin{array}{l}2 - y\left( {\sqrt 6 + \sqrt 3 } \right) = 1\\x = \sqrt 2 - y\sqrt 3 \end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{{\sqrt 2 - 1}}{{\sqrt 3 }}\\x = \sqrt 2 - y\sqrt 3 \end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}y = \dfrac{{\sqrt 6 - \sqrt 3 }}{3}\\x = 1\end{array} \right.\)
Vậy hệ phương trình đã cho có nghiệm duy nhất \(\left( {x;y} \right) = \left( {1;\dfrac{{\sqrt 6 - \sqrt 3 }}{3}} \right)\)
Chọn B