Một xưởng theo kế hoạch phải in 6000 quyển sách giống nhau trong một thời gian quy định, với số quyển sách in được trong mỗi ngày là như nhau. Khi thực hiện mỗi ngày xưởng đã in nhiều hơn 300 quyển so với trong kế hoạch, nên xưởng đã in xong số quyển sách nói trên sớm hơn một ngày. Tính số quyển sách xưởng in được trong một ngày theo kế hoạch.
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi số sách xưởng dự định in trong một ngày theo kế hoạch là \(x\) (quyển), \(\left( {x \in \mathbb{N}*,\,\,\,x < 6000} \right).\)
\( \Rightarrow \) Số ngày hoàn thành theo dự định là: \(\dfrac{{6000}}{x}\) (ngày).
Số sách thực tế mà xưởng in được trong một ngày là: \(x + 300\) (quyển).
\( \Rightarrow \) Số ngày hoàn thành thực tế là: \(\dfrac{{6000}}{{x + 300}}\) (ngày).
Vì thực tế, xưởng in xong sớm hơn một ngày, nên ta có phương trình:
\(\begin{array}{l}\dfrac{{6000}}{x} - 1 = \dfrac{{6000}}{{x + 300}}\\ \Rightarrow 6000\left( {x + 300} \right) - x\left( {x + 300} \right) = 6000x\\ \Leftrightarrow 6000x + 1800000 - {x^2} - 300x = 6000x\\ \Leftrightarrow {x^2} + 300x - 1800000 = 0\\ \Leftrightarrow {x^2} - 1200x + 1500x - 1800000 = 0\\ \Leftrightarrow x\left( {x - 1200} \right) + 1500\left( {x - 1200} \right) = 0\\ \Leftrightarrow \left( {x - 1200} \right)\left( {x + 1500} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x - 1200 = 0\\x + 1500 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1200\,\,\,\,\left( {tm} \right)\\x = - 1500\,\,\,\,\left( {ktm} \right)\end{array} \right..\end{array}\)
Vậy số sách xưởng dự định in trong một ngày theo kế hoạch là 1200 quyển.