Một vật chuyển động có vận tốc (mét/giây) được biểu diễn theo thời gian \(t\) (giây) bằng công thức \(v(t) = \frac{1}{2}{t^2} - 4t + 10\). Hỏi sau tối thiểu bao nhiêu giây thì vận tốc của vật không bé hơn \(10\;m/s\) (biết rằng \(t > 0\))?
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiĐể vận tốc vật không dưới \(10\;m/s\), ta cần xét: \(v(t) = \frac{1}{2}{t^2} - 4t + 10 \ge 10 \Rightarrow \frac{1}{2}{t^2} - 4t \ge 0.\)
Xét \(f(t) = \frac{1}{2}{t^2} - 4t;f(t) = 0 \Leftrightarrow \frac{1}{2}{t^2} - 4t = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t = 0}\\{t = 8}\end{array}} \right.\).
Bảng xét dấu \(f(t)\):
Ta có: \(f(t) \ge 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t \le 0{\rm{ (}}l{\rm{) }}}\\{t \ge 8}\end{array}} \right.\).
Vậy, thời gian tối thiểu là 8 giây thì vật sẽ đạt vận tốc không bé hơn \(10\;m/s\).
Chọn D
Đề thi giữa HK2 môn Toán 10 CTST năm 2023-2024
Trường THPT Nguyễn Văn Linh