ADMICRO
Dãy số \(\left( {{u_n}} \right)\) nào sau đây là dãy số giảm?
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 4
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiXét dãy số \({u_n} = \frac{1}{n}\): Xét hiệu: \({u_{n + 1}} - {u_n} = \frac{1}{{n + 1}} - \frac{1}{n} = \frac{{n - n - 1}}{{n\left( {n + 1} \right)}} = \frac{{ - 1}}{{n\left( {n + 1} \right)}} < 0\forall n \in \mathbb{N}*\) nên \({u_{n + 1}} < {u_n}\) nên \({u_n} = \frac{1}{n}\) là dãy số giảm.
Xét dãy số \({u_n} = {\left( { - 1} \right)^n}.{n^2}\) ta có: \({u_1} = - 1,{u_2} = 4,{u_3} = - 9\), suy ra \({u_1} < {u_2},{u_2} > {u_3}\) nên dãy số \({u_n} = {\left( { - 1} \right)^n}.{n^2}\) là dãy số không tăng, không giảm.
Đáp án A
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
Đề thi giữa HK1 môn Toán 11 CD năm 2023-2024
Trường THPT Trần Nhân Tông
02/12/2024
22 lượt thi
0/40
Bắt đầu thi
ZUNIA12
ZUNIA9
AANETWORK