Cho parabol \(y={{x}^{2}}\) và đường thẳng \(y=2mx+1\) luôn cắt nhau tại hai điểm phân biệt có hoành độ giao điểm là \({{x}_{1}}\) và \({{x}_{2}}\). Tính giá trị biểu thức: \(A=\left| {{x}_{1}} \right|+\left| {{x}_{2}} \right|-\sqrt{x_{1}^{2}+2m{{x}_{2}}+3}\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiPhương trình hoành độ giao điểm của parabol \(y={{x}^{2}}\) và đường thẳng \(y=2mx+1\) là \({{x}^{2}}-2mx-1=0\) (1) có \(\Delta '={{m}^{2}}+1>0\) với mọi m.
\(\Rightarrow\) Phương trình (1) luôn có hai nghiệm phân biệt \({{x}_{1}}\) và \({{x}_{2}}\)
\(\Rightarrow\) Parabol \(y={{x}^{2}}\) và đường thẳng \(y=2mx+1\) luôn cắt nhau tại hai điểm phân biệt.
Theo Hệ thức Vi-ét ta có: \(\left\{ \begin{align} & {{x}_{1}}+{{x}_{2}}=2m \\ & {{x}_{1}}{{x}_{2}}=-1 \\ \end{align} \right.\)
Do \({{x}_{1}}\) là nghiệm phương trình (1)
Nên \(x_{1}^{2}-2m{{x}_{1}}-1=0\Rightarrow x_{1}^{2}=2m{{x}_{1}}+1\)
Xét: \(\sqrt{x_{1}^{2}+2m{{x}_{2}}+3}=\sqrt{2m\left( {{x}_{1}}+{{x}_{2}} \right)+4}\) \(=\sqrt{2m.2m+4}=\sqrt{4{{m}^{2}}+4}\) (1)
Ta có: \(\left| {{x}_{1}} \right|+\left| {{x}_{2}} \right|\\ =\sqrt{{{\left( \left| {{x}_{1}} \right|+\left| {{x}_{2}} \right| \right)}^{2}}}\\ =\sqrt{x_{1}^{2}+x_{2}^{2}+2\left| {{x}_{1}}{{x}_{2}} \right|}\)
\(=\sqrt{{{\left( {{x}_{1}}+{{x}_{2}} \right)}^{2}}-2{{x}_{1}}{{x}_{2}}+2\left| {{x}_{1}}{{x}_{2}} \right|}=\sqrt{4{{m}^{2}}+4}\)(2)
Từ (1) và (2) suy ra \(A=\sqrt{4{{m}^{2}}+4}-\sqrt{4{{m}^{2}}+4}=0\)
Đề thi giữa HK2 lớp 9 môn Toán năm 2022-2023
Trường THCS Âu Cơ