ADMICRO
Cho (O;R) và dây cung MN = \(R\sqrt 2 \) . Kẻ OI vuông góc với MN tại I. Tính độ dài OI theo R:
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 9
Lời giải:
Báo saiXét (O) có OI ⊥ MN tại I nên I là trung điểm của MN ⇒ MI = IN =\(\frac{{R\sqrt 2 }}{2}\)
Xét tam giác OIM vuông tại I, theo định lý Pytago ta cóOI2=OM2−MI2⇒OI = \(\sqrt {{R^2} - {{\left( {\frac{{\sqrt 2 R}}{2}} \right)}^2}} = \frac{{\sqrt 2 R}}{2}\)
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK