Cho hình chóp tam giác đều \(S.ABC\) có tất cả các cạnh đều bằng \(a\), gọi \(G\) là trọng tâm tam giác \(SBC\). Khoảng cách từ \(G\) đến mặt phẳng \(\left( {ABC} \right)\) bằng:
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiGọi \(M\) là trung điểm của \(BC\).
Ta có \(GS \cap \left( {ABC} \right) = M \Rightarrow \dfrac{{d\left( {G;\left( {ABC} \right)} \right)}}{{d\left( {S;\left( {ABC} \right)} \right)}} = \dfrac{{GM}}{{SM}} = \dfrac{1}{3}\).
\( \Rightarrow d\left( {G;\left( {ABC} \right)} \right) = \dfrac{1}{3}d\left( {S;\left( {ABC} \right)} \right)\).
Gọi \(H\) là trọng tâm tam giác đều \(ABC\) suy ra \(SH \bot \left( {ABC} \right)\).
Tam giác \(ABC\) đều cạnh \(a \Rightarrow AM = \dfrac{{a\sqrt 3 }}{2} \Rightarrow AH = \dfrac{2}{3}AM = \dfrac{{a\sqrt 3 }}{3}\).
Trong tam giác vuông \(SAH:\,\,SH = \sqrt {S{A^2} - A{H^2}} = \dfrac{{a\sqrt 6 }}{3}\).
Vậy \(d\left( {G;\left( {ABC} \right)} \right) = \dfrac{1}{3}d\left( {S;\left( {ABC} \right)} \right) = \dfrac{1}{3}SH = \dfrac{{a\sqrt 6 }}{9}\).
Chọn C.