ADMICRO
Cho \(\Delta ABC\) cân tại A, có \(\widehat{A}={{40}^{0}}\), đường trung trực của AB cắt BC ở D. Tính \(\widehat{CAD}\)
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 7
Lời giải:
Báo saiVì \(\Delta ABC\) cân tại A (gt) \(\Rightarrow \widehat{B}=\widehat{C}=\left( {{180}^{0}}-\widehat{A} \right):2=\left( {{180}^{0}}-{{40}^{0}} \right):2={{70}^{0}}.\)
Vì D thuộc đường trung trực của AB nên
\(\Rightarrow AD=BD\) (tính chất đường trung trực của đoạn thẳng)
\(\Rightarrow \Delta ABD\) cân tại D (dấu hiệu nhận biết tam giác cân)
\(\Rightarrow \widehat{DAC}+\widehat{CAB}=\widehat{DAB}=\widehat{B}={{70}^{0}}\Rightarrow \widehat{DAC}={{70}^{0}}-\widehat{CAB}={{70}^{0}}-{{40}^{0}}={{30}^{0}}.\)
Chọn A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK