ADMICRO
Cho đa giác lồi có n cạnh \(\left( n\ge 4 \right)\), các đường chéo của đa giác cắt nhau tạo thành bao nhiêu giao điểm, biết rằng không có ba đường thẳng nào đồng quy.
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ADSENSE / 1
Chủ đề: Đề thi Học Kỳ/Giữa Kỳ
Môn: Toán Lớp 11
Lời giải:
Báo saiNối 2 đỉnh bất kì của đa giác ta được số đoạn thẳng là \(C_{n}^{2}\) .
Trong số \(C_{n}^{2}\) đoạn thẳng đó bao gồm các đường chéo của đa giác và n cạnh của đa giác.
Suy ra số đường chéo của đa giác là: \(C_{n}^{2}-n=\frac{n!}{2!\left( n-2 \right)!}-n=\frac{n\left( n-1 \right)}{2}-n=\frac{{{n}^{2}}-3n}{2}.\)
Vì không có 3 đường chéo nào đồng quy nên cứ 2 đường chéo cắt nhau tạo ra 1 giao điểm. Vậy số giao điểm là \(C_{\frac{n\left( n-3 \right)}{2}}^{2}.\)
Chọn A.
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
ZUNIA12
ZUNIA9
AANETWORK