Tính diện tích hình phẳng giới hạn bởi các đường sau: \(\displaystyle y = {x^3} - 1\) và tiếp tuyến với \(\displaystyle y = {x^3} - 1\) tại điểm \(\displaystyle \left( { - 1; - 2} \right)\).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiXét \(\displaystyle y = g\left( x \right) = {x^3} - 1\) có \(\displaystyle g'\left( x \right) = 3{x^2}\)\(\displaystyle \Rightarrow g'\left( { - 1} \right) = 3\).
Phương trình tiếp tuyến của đồ thị hàm số \(\displaystyle y = g\left( x \right)\) tại điểm \(\displaystyle \left( { - 1; - 2} \right)\) là:
\(\displaystyle y = 3\left( {x + 1} \right) - 2\) hay \(\displaystyle y = 3x + 1\).
Xét phương trình \(\displaystyle {x^3} - 1 = 3x + 1 \Leftrightarrow {x^3} - 3x - 2 = 0\) \(\displaystyle \Leftrightarrow \left( {x - 2} \right){\left( {x + 1} \right)^2} = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 2\end{array} \right.\)
Diện tích: \(\displaystyle S = \int\limits_{ - 1}^2 {\left| {{x^3} - 3x - 2} \right|dx} \) \(\displaystyle = \int\limits_{ - 1}^2 {\left( { - {x^3} + 3x + 2} \right)dx} \) \(\displaystyle = \left. {\left( { - \dfrac{{{x^4}}}{4} + \dfrac{3}{2}{x^2} + 2x} \right)} \right|_{ - 1}^2\) \(\displaystyle = - 4 + 6 + 4 + \dfrac{1}{4} - \dfrac{3}{2} + 2 = \dfrac{{27}}{4}\).
Vậy \(\displaystyle S = \dfrac{{27}}{4}\).