Tìm tập xác định hàm số sau \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9maakaaabaGaciiBaiaa % c+gacaGGNbWaaSbaaSqaamaalaaabaGaaGymaaqaaiaaikdaaaaabe % aakmaalaaabaGaaG4maiabgkHiTiaaikdacaqG4bGaeyOeI0IaamiE % amaaCaaaleqabaGaaGOmaaaaaOqaaiaadIhacqGHRaWkcaaIXaaaaa % Wcbeaaaaa!47FA! f\left( x \right) = \sqrt {{{\log }_{\frac{1}{2}}}\frac{{3 - 2{\rm{x}} - {x^2}}}{{x + 1}}} \)
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Lời giải:
Báo saiHàm số xác định khi: \(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaeiBaiaab+ % gacaqGNbWaaSbaaSqaamaalaaabaGaaeymaaqaaiaabkdaaaaabeaa % kmaabmaabaWaaSaaaeaacaaIZaGaeyOeI0IaaGOmaiaadIhacqGHsi % slcaWG4bWaaWbaaSqabeaacaaIYaaaaaGcbaGaamiEaiabgUcaRiaa % igdaaaaacaGLOaGaayzkaaGaeyyzImRaaGimaaaa!4760! {\rm{lo}}{{\rm{g}}_{\frac{{\rm{1}}}{{\rm{2}}}}}\left( {\frac{{3 - 2x - {x^2}}}{{x + 1}}} \right) \ge 0\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HS9aai % qaaqaabeqaamaalaaabaGaaG4maiabgkHiTiaaikdacaWG4bGaeyOe % I0IaamiEamaaCaaaleqabaGaaGOmaaaaaOqaaiaadIhacqGHRaWkca % aIXaaaaiabg6da+iaaicdaaeaadaWcaaqaaiaaiodacqGHsislcaaI % YaGaamiEaiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaaakeaaca % WG4bGaey4kaSIaaGymaaaacqGHKjYOcaaIXaaaaiaawUhaaiaabcca % caqGGaGaeyi1HS9aaiqaaqaabeqaaiaadIhacqGHiiIZdaqadaqaai % abgkHiTiabg6HiLkaacUdacqGHsislcaaIZaaacaGLOaGaayzkaaGa % eyOkIG8aaeWaaeaacqGHsislcaaIXaGaai4oaiaaigdaaiaawIcaca % GLPaaaaeaacaWG4bGaeyicI48aaKGeaeaadaWcaaqaaiabgkHiTiaa % iodacqGHsisldaGcaaqaaiaaigdacaaI3aaaleqaaaGcbaGaaGOmaa % aacaGG7aGaeyOeI0IaaGymaaGaay5waiaawMcaaiabgQIiipaajiba % baWaaSaaaeaacqGHsislcaaIZaGaey4kaSYaaOaaaeaacaaIXaGaaG % 4naaWcbeaaaOqaaiaaikdaaaGaai4oaiabgUcaRiabg6HiLcGaay5w % aiaawMcaaaaacaGL7baaaaa!7A92! \Leftrightarrow \left\{ \begin{array}{l} \frac{{3 - 2x - {x^2}}}{{x + 1}} > 0\\ \frac{{3 - 2x - {x^2}}}{{x + 1}} \le 1 \end{array} \right.{\rm{ }} \Leftrightarrow \left\{ \begin{array}{l} x \in \left( { - \infty ; - 3} \right) \cup \left( { - 1;1} \right)\\ x \in \left[ {\frac{{ - 3 - \sqrt {17} }}{2}; - 1} \right) \cup \left[ {\frac{{ - 3 + \sqrt {17} }}{2}; + \infty } \right) \end{array} \right.\)
\(% MathType!MTEF!2!1!+- % feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyi1HSTaam % iEaiabgIGiopaajibabaWaaSaaaeaacqGHsislcaaIZaGaeyOeI0Ya % aOaaaeaacaaIXaGaaG4naaWcbeaaaOqaaiaaikdaaaGaai4oaiabgk % HiTiaaiodaaiaawUfacaGLPaaacqGHQicYdaqcsaqaamaalaaabaGa % eyOeI0IaaG4maiabgUcaRmaakaaabaGaaGymaiaaiEdaaSqabaaake % aacaaIYaaaaiaacUdacaaIXaaacaGLBbGaayzkaaaaaa!4DF6! \Leftrightarrow x \in \left[ {\frac{{ - 3 - \sqrt {17} }}{2}; - 3} \right) \cup \left[ {\frac{{ - 3 + \sqrt {17} }}{2};1} \right)\)