ADMICRO
Đồ thị hàm số \(y = \dfrac{5}{{2 - 3x}}\) có đường tiệm cận đứng là:
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ZUNIA12
Lời giải:
Báo saiVì \(5 > 0\) và \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {{\left( {\frac{2}{3}} \right)}^ + }} \left( {2 - 3x} \right) = 0\\2 - 3x < 0,\forall x > \frac{2}{3}\end{array} \right.\) nên
\(\mathop {\lim }\limits_{x \to {{\left( {\dfrac{2}{3}} \right)}^ + }} \dfrac{5}{{2 - 3x}} = - \infty ;\)
Tương tự \(\mathop {\lim }\limits_{x \to {{\left( {\dfrac{2}{3}} \right)}^ - }} \dfrac{5}{{2 - 3x}} = + \infty \) nên \(x = \dfrac{2}{3}\) là tiệm cận đứng,
ZUNIA9
AANETWORK