ADMICRO

Cho \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqaMrevLHfij5gC1rhimfMBNvxyNvga7XvAUrhxSL % wBPr3CFTNm951E103ECzMCHn2ECrxz4r3EK1hE9ThE91xpCXMBGewF % amXvP5wqSXMqHnxAJn0BKvguHDwzZbqefqvATv2CG4uz3bIuV1wyUb % qedmvETj2BSbqefm0B1jxALjhiov2DaebbnrfifHhDYfgasaacH8Yj % Y-vipgYlh9vqqj-hEeeu0xXdbba9frFj0-OqFfea0dXdd9vqai-hGu % Q8kuc9pgc9q8qqaq-dir-f0-yqaiVgFr0xfr-xfr-xb9adbaqaaeGa % ciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8qadaWdXbWdaeaape % WaaSaaa8aabaWdbiaabsgacaWG4baapaqaa8qacaWG4baaaaWcpaqa % a8qacaaIYaaapaqaa8qacaaI1aaaniabgUIiYdGccqGH9aqpciGGSb % GaaiOBaiaadggaaaa!5C64! \int\limits_2^5 {\frac{{{\rm{d}}x}}{x}} = \ln a\). Tìm a

Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án

ZUNIA12
ZUNIA9
AANETWORK