ADMICRO
Cho hàm số \(y = x\sqrt {1 + {x^2}} \) . Tính y'.
Chính xác
Xem lời giải
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
ZUNIA12
Lời giải:
Báo sai\(\begin{array}{l}y' = \left( x \right)'.\sqrt {1 + {x^2}} + x.\left( {\sqrt {1 + {x^2}} } \right)'\\ = \sqrt {1 + {x^2}} + x.\dfrac{{\left( {1 + {x^2}} \right)'}}{{2\sqrt {1 + {x^2}} }}\\ = \sqrt {1 + {x^2}} + x.\dfrac{{2x}}{{2\sqrt {1 + {x^2}} }}\\ = \sqrt {1 + {x^2}} + \dfrac{{{x^2}}}{{\sqrt {1 + {x^2}} }}\\ = \dfrac{{1 + {x^2} + {x^2}}}{{\sqrt {1 + {x^2}} }} = \dfrac{{1 + 2{x^2}}}{{\sqrt {1 + {x^2}} }}\end{array}\)
ZUNIA9
AANETWORK