Cho hai biến cố \(A\),\(B\) là hai biến cố độc lập với \(P\left( A \right)=0,1997,\,\,P\left( B \right)=0,1994.\) Tính \(P\left( A|B \right).\)
Bộ Đề Kiểm Tra Tham Khảo Học Kì II - Toán 12 - Cánh Diều – Bộ Đề 01 giúp học sinh ôn luyện chuyên sâu theo định hướng thi cuối cấp. Đề thi có 3 phần theo cấu trúc mới nhất: Phần A. Trắc Nghiệm, bao gồm Câu Trắc Nghiệm Nhiều Phương Án Lựa Chọn, Câu Trắc Nghiệm Đúng Sai, Câu Trắc Nghiệm Trả Lời Ngắn. Các nội dung chính được kiểm tra bao gồm: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số, Nguyên Hàm, Tích Phân, Phương Pháp Tọa Độ Trong Không Gian, Phân Tích Và Xử Lí Dữ Liệu, Xác Suất. Câu hỏi được xây dựng với mức độ phân hóa hợp lý, phù hợp cho cả kiểm tra giữa kỳ và chuẩn bị thi tốt nghiệp THPT.
Câu hỏi liên quan
Ở vùng A có hai nhóm, nhóm 1 là nhóm người có thu nhập tốt (trên 15 triệu đồng/tháng) và nhóm 2 là nhóm có thu nhập không tốt. Ở vùng A có 40% người có thu nhập tốt và 58% người không gửi tiết kiệm. Khảo sát độc lập những người thuộc nhóm 1 và nhóm 2 và tính tỉ lệ phần trăm số người gửi tiết kiệm của từng nhóm thì thấy rằng: Tỷ lệ người gửi tiết kiệm của nhóm 1 gấp đôi tỉ lệ người tiết kiệm của nhóm 2. Giả sử một người ở vùng A không gửi tiết kiệm. Xác suất để người ấy có thu nhập tốt là bao nhiêu % (kết quả làm tròn đến hàng phần chục).
Một công ty bảo hiểm nhận thấy có \(48%\) số người mua bảo hiểm ô tô là phụ nữ và có \(36%\) số người mua bảo hiểm ô tô là phụ nữ trên \(45\) tuổi. Biết một người mua bảo hiểm ô tô là phụ nữ, tính xác suất người đó trên \(45\) tuổi?
Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai (Làm tròn đến chữ số hàng phần trăm).
Hai bạn An, Bình cùng ném bóng rổ. Mỗi lần chỉ có một người ném với quy tắc như sau: Nếu ném trúng thì người đó sẽ ném tiếp, nếu ném trượt thì đến lượt người kia ném. Ở mọi lần ném bóng, xác suất An ném trúng đều là 0,4 và xác suất Bình ném trúng đều là 0,6. Hai bạn rút thăm để quyết định người ném bóng đầu tiên. Xác suất người được ném đầu tiên là An và xác suất người được ném đầu tiên là Bình cùng bằng 0,5. Tìm xác suất để người ném bóng lần thứ 2 là Bình.
Trong mỗi ý a), b), c). d) ở mỗi câu, học sinh chọn đúng hoặc sai.
Lớp 12A có \({40}\) học sinh, trong đó có \({25}\) học sinh tham gia câu lạc bộ Tiếng Anh, \({16}\) học sinh tham gia câu lạc bộ Toán, \({12}\) học sinh vừa tham gia câu lạc bộ tiếng Anh vừa tham gia câu lạc bộ Toán. Chọn ngẫu nhiên 1 học sinh. Xét các biến cố sau:
\({A}\): Học sinh được chọn tham gia câu lạc bộ Tiếng Anh;
\({B}\): Học sinh được chọn tham gia câu lạc bộ Toán.
Một công ty dược phẩm giới thiệu một dụng cụ để kiểm tra sớm bệnh sốt xuất huyết. Về báo cáo kiểm định chất lượng của sản phẩm, họ cho biết như sau: Số người được thử là \(8.000\), trong số đó có \(1.200\) người đã bị nhiễm bệnh sốt xuất huyết và có \(6.800\) người không bị nhiễm bệnh sốt xuất huyết. Nhưng khi kiểm tra lại bằng dụng cụ của công ty, trong \(1.200\) người đã bị nhiễm bệnh sốt xuất huyết, có \(70%\) số người đó cho kết quả dương tính, còn lại cho kết quả âm tính. Trong \(6.800\) người không bị nhiễm bệnh sốt xuất huyết, có \(5%\) số người đó cho kết quả dương tính, còn lại cho kết quả âm tính. Xác suất mà một bệnh nhân với kết quả kiểm tra dương tính là bị nhiễm bệnh sốt xuất huyết bằng bao nhiêu? (viết kết quả dưới dạng số thập phân và làm tròn đến hàng phần trăm).
Một nhà máy sản xuất bóng đèn có tỷ lệ bóng đèn đạt tiêu chuẩn là \(82\text{ }\!\!%\!\!\text{ }\). Trước khi xuất ra thị trường, mỗi bóng đèn được sản xuất ra đều phải qua một khâu kiểm tra chất lượng tự động. Vì sự kiềm tra này không chính xác tuyệt đối nên một bóng đèn tốt chi có xác suất \(92\text{ }\!\!%\!\!\text{ }\) được công \(96\text{ }\!\!%\!\!\text{ }\) được loại bỏ.
Gọi \(A\) là biến cố "bóng được công nhận đạt tiêu chuẩn sau khi qua kiểm tra chất lượng".
Gọi \(B\) là biến cố "Sản phầm đạt tiêu chuẩn".
Trước khi đưa sản phẩm ra thị trường, người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 50 người trả lời “sẽ mua”, 90 người trả lời “có thể sẽ mua” và 60 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 60%, 40% và 1%. Trong số khách hàng thực sự mua sản phẩm thì xác suất khách hàng trả lời “sẽ mua” là \(\frac{a}{b}\). Khi đó giá trị của biểu thức \(T=\frac{1}{2}a+b\) bằng bao nhiêu ?
Một nhà bán hàng A vì lợi nhuận của bản thân nên đã nhập về một lô hàng bánh kẹo giả kém chất lượng và giống y hết bên ngoài với các loại bánh kẹo chính hãng. Mỗi thùng bánh kẹo được đóng gói với số lượng giống nhau (24 gói bánh kẹo/thùng). Sau đó, để qua mắt lực lượng chức năng nhà bán hàng trộn lẫn kẹo giả và mỗi thùng kẹo chính hãng và chia làm 3 loại:
• Loại I để lẫn vào mỗi thùng 3 gói bánh kẹo hàng giả.
• Loại II để lẫn vào mỗi thùng 2 gói bánh kẹo hàng giả.
• Loại III để lẫn vào mỗi thùng có 4 gói bánh kẹo hàng giả.
Biết số lượng thùng loại I gấp 2 lần số lượng thùng loại II và số thùng loại II gấp 3 lần thùng loại III.
Sau đó nhà bán hàng A nhằm kiểm tra thử xem khi lực lượng chức năng vào kiểm tra có thể qua mắt được hay không? Bằng cách chọn ngẫu nhiên 1 thùng từ trong kho, từ đó chọn ngẫu nhiên 10 gói bánh kẹo bất kì. Tính xác suất để lấy được 2 gói bánh kẹo giả kém chất lượng (làm tròn đến kết quả phần chục).
Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Cho hai biến cố \(A\) : “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 6” và \(B\): “Con xúc xắc thứ nhất xuất hiện mặt 4 chấm”. Có bao nhiêu kết quả thuận lợi cho biến cố \(A\) khi biến cố \(B\) xảy ra?
Ở một thị xã, tỉ lệ mắc căn bệnh M là 22%. Chính quyền thị xã đó muốn biết danh sách những người bị mắc bệnh nên đã tổ chức xét nghiệm cho toàn bộ người dân. Tuy nhiên bộ “test” được sử dụng trong phương pháp xét nghiệm này có những sai sót nhất định:
- Nếu một người không bị bệnh thì xác suất bộ “test” cho ra kết quả dương tính là 10%.
- Nếu bộ “test” cho ra kết quả dương tính thì xác suất bị bệnh là 70%.
Trước khi đưa một loại sản phẩm ra thị trường, người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó. Kết quả thống kê như sau: có 105 người trả lời “sẽ mua”; có 95 người trả lời “không mua”. Kinh nghiệm cho thấy tỉ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời “sẽ mua” và “không mua” lần lượt là 70% và 30%.
Gọi A là biến cố “Người được phỏng vấn thực sự sẽ mua sản phẩm”.
Gọi B là biến cố “Người được phỏng vấn trả lời sẽ mua sản phẩm”.
Một xưởng máy sử dụng một loại linh kiện được sản xuất từ hai cơ sở I và II. Số linh kiện do cơ sở I sản xuất chiếm \(61%\), số linh kiện do cơ sở II sản xuất chiếm \(39%\). Tỉ lệ linh kiện đạt tiêu chuẩn của cơ sở I, cơ sở II lần lượt là \(93%\), \(82%\). Kiểm tra ngẫu nhiên một linh kiện ở xưởng máy. Xét các biến cố:
\({{A}_{1}}\): “Linh kiện được kiểm tra do cơ sở I sản xuất”;
\({{A}_{2}}\): “Linh kiện được kiểm tra do cơ sở II sản xuất”;
\(B\): “Linh kiện được kiểm tra đạt tiêu chuẩn”.
Một hộp chứa 10 viên bi xanh và 5 viên bi đỏ. Bạn An lấy ra ngẫu nhiên 1 viên bi từ hộp, xem màu, rồi bỏ ra ngoài. Nếu viên bi An lấy ra có màu xanh, bạn Bình sẽ lấy ra ngẫu nhiên 2 viên bi từ hộp; còn nếu viên bi An lấy ra có màu đỏ, bạn Bình sẽ lấy ra ngẫu nhiên 3 viên bi từ hộp. Tính xác suất để An lấy được viên bi màu xanh, biết rằng tất cả các viên bi được hai bạn chọn ra đều có đủ cả hai màu. (kết quả làm tròn đến hàng phần trăm).
Có hai chiếc hộp, hộp I có 6 quả bóng màu đỏ và 4 quả bóng màu vàng, hộp II có 7 quả bóng màu đỏ và 3 quả bóng màu vàng, các quả bóng có cùng kích thước và khối lượng. Lấy ngẫu nhiên một quả bóng từ hộp I bỏ vào hộp II. Sau đó, lấy ra ngẵu nhiên một quả bóng từ hộp II. Tính xác suất để quả bóng được lấy ra từ hộp II là quả bóng được chuyển từ hộp I sang, biết rằng quả bóng đó có màu đỏ.
Cho \(A,B\) là các biến cố của một phép thử \(T.\) Biết rằng \(P\left( B \right)>0,\) xác suất của biến cố \(A\) với điều kiện biến cố \(B\) đã xảy ra được tính theo công thức nào sau đây?
Cho \(P(A) = \frac{2}{5}\), \(P(B|A) = \frac{1}{4}\). Giá trị của \(P(B \cap A)\) là:
Cho \(P(A) = \frac{2}{5}, P(B|A)=\frac{1}{3}, P(\overline{B}|A) = \frac{1}{4}\). Giá trị của \(P(B)\) là
Trong một túi có một số viên kẹo cùng loại, chỉ khác màu, trong đó có \(6\)viên kẹo màu cam, còn lại là kẹo màu vàng. Hà lấy ngẫu nhiên \(1\) viên kẹo từ trong túi, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm \(1\) viên kẹo khác từ trong túi. Biết rằng xác suất Hà lấy được cả hai viên kẹo màu cam là \(\frac{1}{3}\). Hỏi ban đầu trong túi có bao nhiêu viên kẹo?
Cho hai biến cố \(A\) và \(B\) , với \(P\left( A \right)=0,8\), \(P\left( B \right)=0,65\), \(P\left( A\bar{B} \right)=0,55\). Tính \(P\left( \bar{A}B \right)\).