Một công ty bảo hiểm nhận thấy có \(48%\) số người mua bảo hiểm ô tô là phụ nữ và có \(36%\) số người mua bảo hiểm ô tô là phụ nữ trên \(45\) tuổi. Biết một người mua bảo hiểm ô tô là phụ nữ, tính xác suất người đó trên \(45\) tuổi?
Tuyển Tập Đề Thi Tham Khảo Tốt Nghiệp THPT Quốc Gia Năm 2025 – Môn Toán – Bộ Đề 01 do cụm trường tỉnh Đồng Nai biên soạn là tài liệu ôn luyện hữu ích dành cho học sinh lớp 12 đang chuẩn bị cho kỳ thi tốt nghiệp THPT. Đề thi được xây dựng bám sát theo cấu trúc và mức độ của đề minh họa do Bộ Giáo dục và Đào tạo công bố, bao gồm đầy đủ các dạng câu hỏi từ nhận biết, thông hiểu đến vận dụng và vận dụng cao. Tài liệu không chỉ giúp học sinh rèn luyện kỹ năng làm bài mà còn hỗ trợ giáo viên trong công tác giảng dạy và đánh giá năng lực học sinh một cách hiệu quả.
Câu hỏi liên quan
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Lớp 12A1 có 40 học sinh, trong đó có 25 học sinh tham gia câu lạc bộ cầu lông, 16 học sinh tham
gia câu lạc bộ đá bóng, 12 học sinh tham gia cả câu lạc bộ cầu lông và câu lạc bộ đá bóng. Chọn ngẫu nhiên
một học sinh. Xét các biến cố sau:
A: “Học sinh được chọn tham gia câu lạc bộ cầu lông”.
B: “Học sinh được chọn tham gia câu lạc bộ đá bóng”.
Một nhà máy sản xuất bóng đèn có tỷ lệ bóng đèn đạt tiêu chuẩn là \(82\text{ }\!\!%\!\!\text{ }\). Trước khi xuất ra thị trường, mỗi bóng đèn được sản xuất ra đều phải qua một khâu kiểm tra chất lượng tự động. Vì sự kiềm tra này không chính xác tuyệt đối nên một bóng đèn tốt chi có xác suất \(92\text{ }\!\!%\!\!\text{ }\) được công \(96\text{ }\!\!%\!\!\text{ }\) được loại bỏ.
Gọi \(A\) là biến cố "bóng được công nhận đạt tiêu chuẩn sau khi qua kiểm tra chất lượng".
Gọi \(B\) là biến cố "Sản phầm đạt tiêu chuẩn".
Một doanh nghiệp có \(45\%\) nhân viên là nữ. Tỉ lệ nhân viên nữ có bằng đại học là \(30\%\) và tỉ lệ nhân viên nam có bằng đại học là \(25\%\). Chọn ngẫu nhiên 1 nhân viên Nam và 1 nhân viên nữ của doanh nghiệp. Biết rằng chỉ một trong hai nhân viên có bằng đại học, tính xác suất người đó là nhân viên nữ. (Làm tròn kết quả đến hàng phần trăm).
Một nhà đầu tư phân loại các dự án trong một chu kỳ đầu tư thành 3 loại: ít rủi ro, rủi ro trung bình và rủi ro cao. Tỷ lệ các dự án các loại đó tương ứng là \(20%;\text{ }45%\text{ }v\grave{a}\text{ }35%\). Kinh nghiệm cho thấy tỷ lệ các dự án gặp rủi ro khi đầu tư tương ứng là \(5%;\text{ }20%\text{ }v\grave{a}\text{ }40%.\) Nếu một dự án gặp rủi ro sau kỳ đầu tư thì khả năng dự án rủi ro lớn nhất là bao nhiêu?
Một căn bệnh \(X\) có \(4\text{ }\!\!%\!\!\text{ }\) dân số mắc phải. Một phương pháp chẩn đoán bệnh \(X\) có tỉ lệ chính xác là \(99\text{ }\!\!%\!\!\text{ }\). Với những người bị bệnh, phương pháp này sẽ đưa ra kết quả dương tính \(99\text{ }\!\!%\!\!\text{ }\) số trường hợp. Với những người không mắc bệnh, phương pháp này cũng chẩn đoán đúng \(98\text{ }\!\!%\!\!\text{ }\). Chọn ngẫu nhiên một người đi kiểm tra bệnh \(X\) bằng phương pháp trên.
Cho hai biến cố \(A\) và \(B\) , với \(P\left( A \right)=0,8\), \(P\left( B \right)=0,65\), \(P\left( A\bar{B} \right)=0,55\). Tính \(P\left( \bar{A}B \right)\).
Ở một thị xã, tỉ lệ mắc căn bệnh M là 22%. Chính quyền thị xã đó muốn biết danh sách những người bị mắc bệnh nên đã tổ chức xét nghiệm cho toàn bộ người dân. Tuy nhiên bộ “test” được sử dụng trong phương pháp xét nghiệm này có những sai sót nhất định:
- Nếu một người không bị bệnh thì xác suất bộ “test” cho ra kết quả dương tính là 10%.
- Nếu bộ “test” cho ra kết quả dương tính thì xác suất bị bệnh là 70%.
Một phân xưởng của nhà máy phân bón A có 10 máy trộn phân bón hoạt động một cách độc lập với nhau. Nhân viên bảo trì của nhà máy xác định rằng lúc nào cũng sẽ có đúng 2 máy hỏng để bảo trì. Tìm xác suất để máy thứ nhất không hỏng. Biết rằng xác suất hỏng của các máy là như nhau và bằng \(0,1\).
Một xưởng máy sử dụng một loại linh kiện được sản xuất từ hai cơ sở I và II. Số linh kiện do cơ sở I sản xuất chiếm \(61%\), số linh kiện do cơ sở II sản xuất chiếm \(39%\). Tỉ lệ linh kiện đạt tiêu chuẩn của cơ sở I, cơ sở II lần lượt là \(93%\), \(82%\). Kiểm tra ngẫu nhiên một linh kiện ở xưởng máy. Xét các biến cố:
\({{A}_{1}}\): “Linh kiện được kiểm tra do cơ sở I sản xuất”;
\({{A}_{2}}\): “Linh kiện được kiểm tra do cơ sở II sản xuất”;
\(B\): “Linh kiện được kiểm tra đạt tiêu chuẩn”.
Trước khi đưa một loại sản phẩm ra thị trường, người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phầm đó. Kết quả thống kê như sau: có 105 người trả lời "sẽ mua"; có 95 người trả lời "không mua". Kinh nghiệm cho thấy tỉ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời "sẽ mua" và "không mua" lần lượt là \(70\%\) và \(30\%\).
Gọi \(A\) là biến cố "Người được phỏng vấn thực sự sẽ mua sản phẩm".
Gọi \(B\) là biến cố "Người được phỏng vấn trả lời sẽ mua sản phẩm".
Cho hai biến cố ngẫu nhiên \(A\) và \(B\) có \(P(A) = 0,7; P(B) = 0,3; P(\overline{A}B) = 0,2\). Xác suất của \(A\) với điều kiện \(\overline{B}\) là:
Trước khi đưa một loại sản phẩm ra thị trường, người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó. Kết quả thống kê như sau: có 105 người trả lời “sẽ mua”; có 95 người trả lời “không mua”. Kinh nghiệm cho thấy tỉ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời “sẽ mua” và “không mua” lần lượt là 70% và 30%.
Gọi A là biến cố “Người được phỏng vấn thực sự sẽ mua sản phẩm”.
Gọi B là biến cố “Người được phỏng vấn trả lời sẽ mua sản phẩm”.
Cho \(P(A) = \frac{2}{5}\), \(P(B|A) = \frac{1}{4}\). Giá trị của \(P(B \cap A)\) là:
Hai bạn An, Bình cùng ném bóng rổ. Mỗi lần chỉ có một người ném với quy tắc như sau: Nếu ném trúng thì người đó sẽ ném tiếp, nếu ném trượt thì đến lượt người kia ném. Ở mọi lần ném bóng, xác suất An ném trúng đều là \({0{,}4}\) và xác suất Bình ném trúng đều là \({0{,}6}\). Hai bạn rút thăm để quyết định người ném bóng đầu tiên. Xác suất người được ném đầu tiên là An và xác suất người được ném đầu tiên là Bình cùng bằng \({0{,}5}\). Tìm xác suất để người ném bóng lần thứ \({2}\) là Bình.
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Lớp 12A1 có 40 học sinh, trong đó có 25 học sinh tham gia câu lạc bộ cầu lông, 16 học sinh tham gia câu lạc bộ đá bóng, 12 học sinh tham gia cả câu lạc bộ cầu lông và câu lạc bộ đá bóng. Chọn ngẫu nhiên một học sinh. Xét các biến cố sau:
\(A:\) "Học sinh được chọn tham gia câu lạc bộ cầu lông";
\(B:\) "Học sinh được chọn tham gia câu lạc bộ đá bóng".
Có một kho chứa bia kém chất lượng chứa các thùng giống nhau (24 lon/thùng) gồm 2 loại: loại I để lẫn mỗi thùng 5 lon quá hạn sử dụng, loại II để lẫn mỗi thùng 3 lon quá hạn. Biết số lượng thùng loại I gấp 2 lần số lượng thùng loại II. Chọn ngẫu nhiên 1 thùng từ trong kho, từ thùng đó chọn ngẫu nhiên 10 lon thì thấy trong 10 lon đó có hai lon quá hạn sử dụng. Tính xác suất 10 lon được lấy là bia loại I (làm tròn kết quả đến hàng phần trăm).
Mỗi hộp đựng 12 bóng đèn, các bóng đèn trong cùng hộp thì cùng màu. Số hộp đựng bóng đèn màu xanh nhiều gấp 9 lần số hộp đựng bóng đèn màu vàng. Trong mỗi hộp đựng bóng đèn màu xanh có 3 bóng bị hỏng, mỗi hộp đựng bóng đèrn màu vàng có 2 bóng bị hỏng. Lấy ngẫu nhiên ra hai bóng đèn từ một hộp bất kì, biết cả hai bóng đều bị hỏng. Xác xuất để lấy ra hai bóng đèn màu xanh bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm).
Cho các biến cố \({A}\) và \({B}\) thỏa mãn \({\mathrm{P}(A)>0}\), \({\mathrm{P}(B)>0}\). Khi đó \({\mathrm{P}(A\mid B)}\) bằng biểu thức nào dưới đây?
Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Cho hai biến cố \(A\) : “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 6” và \(B\): “Con xúc xắc thứ nhất xuất hiện mặt 4 chấm”. Có bao nhiêu kết quả thuận lợi cho biến cố \(A\) khi biến cố \(B\) xảy ra?
Có hai chiếc hộp, hộp I có 6 quả bóng màu đỏ và 4 quả bóng màu vàng, hộp II có 7 quả bóng màu đỏ và 3 quả bóng màu vàng, các quả bóng có cùng kích thước và khối lượng. Lấy ngẫu nhiên một quả bóng từ hộp I bỏ vào hộp II. Sau đó, lấy ra ngẵu nhiên một quả bóng từ hộp II. Tính xác suất để quả bóng được lấy ra từ hộp II là quả bóng được chuyển từ hộp I sang, biết rằng quả bóng đó có màu đỏ.