Một công ty bảo hiểm nhận thấy có \(48%\) số người mua bảo hiểm ô tô là phụ nữ và có \(36%\) số người mua bảo hiểm ô tô là phụ nữ trên \(45\) tuổi. Biết một người mua bảo hiểm ô tô là phụ nữ, tính xác suất người đó trên \(45\) tuổi?
Tuyển Tập Đề Thi Tham Khảo Tốt Nghiệp THPT Quốc Gia Năm 2025 – Môn Toán – Bộ Đề 01 do cụm trường tỉnh Đồng Nai biên soạn là tài liệu ôn luyện hữu ích dành cho học sinh lớp 12 đang chuẩn bị cho kỳ thi tốt nghiệp THPT. Đề thi được xây dựng bám sát theo cấu trúc và mức độ của đề minh họa do Bộ Giáo dục và Đào tạo công bố, bao gồm đầy đủ các dạng câu hỏi từ nhận biết, thông hiểu đến vận dụng và vận dụng cao. Tài liệu không chỉ giúp học sinh rèn luyện kỹ năng làm bài mà còn hỗ trợ giáo viên trong công tác giảng dạy và đánh giá năng lực học sinh một cách hiệu quả.
Câu hỏi liên quan
Trước khi đưa một loại sản phẩm ra thị trường, người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó. Kết quả thống kê như sau: có 105 người trả lời “sẽ mua”; có 95 người trả lời “không mua”. Kinh nghiệm cho thấy tỉ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời “sẽ mua” và “không mua” lần lượt là 70% và 30%.
Gọi A là biến cố “Người được phỏng vấn thực sự sẽ mua sản phẩm”.
Gọi B là biến cố “Người được phỏng vấn trả lời sẽ mua sản phẩm”.
Một hộp chưa 9 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 9. Bạn An lấy ra ngẫu nhiên 1 thẻ từ hộp, xem số rồi bỏ ra ngoài. Nếu thẻ đó được đánh số chẵn, An cho thêm vào hộp thẻ số 10, 11; ngược lại, An cho thêm vào hộp thẻ số 12, 13, 14. Sau đó, Bạn Việt lấy ra ngẫu nhiên đồng thời 3 thẻ từ hộp. Gọi \(X\) là tích các số trên thẻ Việt lấy ra. Tính xác suất của biến cố An lấy được thẻ ghi số chẵn biết rằng \(X\) chia hết cho 2. (Làm tròn kết quả đến hàng phần trăm).
Khảo sát thị trường có \(22,5\text{ }\!\!%\!\!\text{ }\) khách hàng sử dụng sản phẩm \(X,50\text{ }\!\!%\!\!\text{ }\) dùng sản phẩm \(Y\), \(36,5\text{ }\!\!%\!\!\text{ }\) trong số người dùng sản phẩm \(Y\) có dùng sản phẩm \(X\). Tìm xác suất một người dùng sản phẩm Y , biết rằng người đó không dùng sản phẩm \(X\).
Một phân xưởng của nhà máy phân bón A có 10 máy trộn phân bón hoạt động một cách độc lập với nhau. Nhân viên bảo trì của nhà máy xác định rằng lúc nào cũng sẽ có đúng 2 máy hỏng để bảo trì. Tìm xác suất để máy thứ nhất không hỏng. Biết rằng xác suất hỏng của các máy là như nhau và bằng \(0,1\).
Cho các biến cố \({A}\) và \({B}\) thỏa mãn \({\mathrm{P}(A)>0}\), \({\mathrm{P}(B)>0}\). Khi đó \({\mathrm{P}(A\mid B)}\) bằng biểu thức nào dưới đây?
Cho hai biến cố A, B thỏa mãn \(P\left( A \right)=\frac{2}{5},P\left( B|A \right)=\frac{1}{3}\)và \(P\left( B|\overline{A} \right)=\frac{1}{4}\). Tính \(P\left( B\overline{A} \right)\).
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Lớp 12A1 có 40 học sinh, trong đó có 25 học sinh tham gia câu lạc bộ cầu lông, 16 học sinh tham
gia câu lạc bộ đá bóng, 12 học sinh tham gia cả câu lạc bộ cầu lông và câu lạc bộ đá bóng. Chọn ngẫu nhiên
một học sinh. Xét các biến cố sau:
A: “Học sinh được chọn tham gia câu lạc bộ cầu lông”.
B: “Học sinh được chọn tham gia câu lạc bộ đá bóng”.
Cho một hộp kín có 6 thẻ ATM của BIDV và 4 thẻ ATM của Vietcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ATM của Vietcombank nếu biết lần thứ nhất đã lấy được thẻ ATM của BIDV.
Một hộp chứa 10 viên bi xanh và 5 viên bi đỏ. Bạn An lấy ra ngẫu nhiên 1 viên bi từ hộp, xem màu, rồi bỏ ra ngoài. Nếu viên bi An lấy ra có màu xanh, bạn Bình sẽ lấy ra ngẫu nhiên 2 viên bi từ hộp; còn nếu viên bi An lấy ra có màu đỏ, bạn Bình sẽ lấy ra ngẫu nhiên 3 viên bi từ hộp. Tính xác suất để An lấy được viên bi màu xanh, biết rằng tất cả các viên bi được hai bạn chọn ra đều có đủ cả hai màu. (kết quả làm tròn đến hàng phần trăm).
Trước khi đưa sản phẩm ra thị trường, người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 50 người trả lời “sẽ mua”, 90 người trả lời “có thể sẽ mua” và 60 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 60%, 40% và 1%. Trong số khách hàng thực sự mua sản phẩm thì xác suất khách hàng trả lời “sẽ mua” là \(\frac{a}{b}\). Khi đó giá trị của biểu thức \(T=\frac{1}{2}a+b\) bằng bao nhiêu ?
Một nhà đầu tư phân loại các dự án trong một chu kỳ đầu tư thành 3 loại: ít rủi ro, rủi ro trung bình và rủi ro cao. Tỷ lệ các dự án các loại đó tương ứng là \(20%;\text{ }45%\text{ }v\grave{a}\text{ }35%\). Kinh nghiệm cho thấy tỷ lệ các dự án gặp rủi ro khi đầu tư tương ứng là \(5%;\text{ }20%\text{ }v\grave{a}\text{ }40%.\) Nếu một dự án gặp rủi ro sau kỳ đầu tư thì khả năng dự án rủi ro lớn nhất là bao nhiêu?
Có hai chiếc hộp, hộp I có 6 quả bóng màu đỏ và 4 quả bóng màu vàng, hộp II có 7 quả bóng màu đỏ và 3 quả bóng màu vàng, các quả bóng có cùng kích thước và khối lượng. Lấy ngẫu nhiên một quả bóng từ hộp I bỏ vào hộp II. Sau đó, lấy ra ngẫu nhiên một quả bóng từ hộp II. Tính xác suất để quả bóng được lấy ra từ hộp II là quả bóng được chuyển từ hộp I sang, biết rằng quả bóng đó có màu đỏ (làm tròn kết quả đến hàng phần trăm).
Trong mỗi ý a), b), c). d) ở mỗi câu, học sinh chọn đúng hoặc sai.
Lớp 12A có \({40}\) học sinh, trong đó có \({25}\) học sinh tham gia câu lạc bộ Tiếng Anh, \({16}\) học sinh tham gia câu lạc bộ Toán, \({12}\) học sinh vừa tham gia câu lạc bộ tiếng Anh vừa tham gia câu lạc bộ Toán. Chọn ngẫu nhiên 1 học sinh. Xét các biến cố sau:
\({A}\): Học sinh được chọn tham gia câu lạc bộ Tiếng Anh;
\({B}\): Học sinh được chọn tham gia câu lạc bộ Toán.
Cho \(A,B\) là các biến cố của một phép thử \(T.\) Biết rằng \(P\left( B \right)>0,\) xác suất của biến cố \(A\) với điều kiện biến cố \(B\) đã xảy ra được tính theo công thức nào sau đây?
Ở một thị xã, tỉ lệ mắc căn bệnh M là 22%. Chính quyền thị xã đó muốn biết danh sách những người bị mắc bệnh nên đã tổ chức xét nghiệm cho toàn bộ người dân. Tuy nhiên bộ “test” được sử dụng trong phương pháp xét nghiệm này có những sai sót nhất định:
- Nếu một người không bị bệnh thì xác suất bộ “test” cho ra kết quả dương tính là 10%.
- Nếu bộ “test” cho ra kết quả dương tính thì xác suất bị bệnh là 70%.
Trong một túi có một số viên kẹo cùng loại, chỉ khác màu, trong đó có \(6\)viên kẹo màu cam, còn lại là kẹo màu vàng. Hà lấy ngẫu nhiên \(1\) viên kẹo từ trong túi, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm \(1\) viên kẹo khác từ trong túi. Biết rằng xác suất Hà lấy được cả hai viên kẹo màu cam là \(\frac{1}{3}\). Hỏi ban đầu trong túi có bao nhiêu viên kẹo?
Mỗi hộp đụng 12 bóng đèn, các bóng đèn trong cùng hộp thì cùng màu. Số hộp đựng bóng đèn màu xanh nhiều gấp 9 lần số hộp đựng bóng đèn màu vàng. Trong mỗi hộp đựng bóng đèn màu xanh có 3 bóng bị hỏng, mỗi hộp đựng bóng đèn màu vàng có 2 bóng bị hỏng. Lấy ngẫu nhiên ra hai bóng đèn từ một hộp bất kì, tính xác xuất để lấy ra hai bóng đèn màu xanh, biết cả hai bóng đều bị hỏng (kết quả làm tròn đến hàng phần trăm).
Có một kho chứa bia kém chất lượng chứa các thùng giống nhau (24 lon/thùng) gồm 2 loại: loại I để lẫn mỗi thùng 5 lon quá hạn sử dụng, loại II để lẫn mỗi thùng 3 lon quá hạn. Biết số lượng thùng loại I gấp 2 lần số lượng thùng loại II. Chọn ngẫu nhiên 1 thùng từ trong kho, từ thùng đó chọn ngẫu nhiên 10 lon thì thấy trong 10 lon đó có hai lon quá hạn sử dụng. Tính xác suất 10 lon được lấy là bia loại I (làm tròn kết quả đến hàng phần trăm).
Cho \(P(A) = \frac{2}{5}, P(B|A)=\frac{1}{3}, P(\overline{B}|A) = \frac{1}{4}\). Giá trị của \(P(B)\) là
Trong cơ quan có \(100\) người. Trong đó có \(60\) người gần cơ quan (trong đó có \(40\) người là nam), có tổng cộng \(30\) nữ nhân viên. Theo quy định của cơ quan thì người nào hoặc là nam hoặc gần cơ quan sẽ phải tham gia trực. Tính xác suất để chọn ngẫu nhiên một người trong danh sách mà người đó lại là nữ trực cơ quan? (Kết quả làm tròn đến hàng phần trăm)