Cho \(P(A) = \frac{2}{5}, P(B|A)=\frac{1}{3}, P(\overline{B}|A) = \frac{1}{4}\). Giá trị của \(P(B)\) là
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Phương pháp giải:
Áp dụng công thức tính xác suất toàn phần.
Lời giải chi tiết:
Ta có \(P(\overline{A}) = 1-P(A) = 1-\frac{2}{5}=\frac{3}{5}\).
Áp dụng công thức xác suất toàn phần:
\(\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B} \mid \mathrm{A})+\mathrm{P}(\overline{\mathrm{A}}) \cdot \mathrm{P}(\mathrm{B} \mid \overline{\mathrm{A}})=\frac{2}{5} \cdot \frac{1}{3}+\frac{3}{5} \cdot \frac{1}{4}=\frac{17}{60}\).
Bộ Đề Kiểm Tra Tham Khảo Học Kì II - Toán 12 - Kết Nối Tri Thức Với Cuộc Sống – Bộ Đề 01 được xây dựng theo định hướng phát triển năng lực, phù hợp với học sinh đang ôn tập học kỳ II và chuẩn bị cho kỳ thi THPT. Cấu trúc đề gồm 3 phần chính: Phần A. Trắc Nghiệm, với Câu Trắc Nghiệm Nhiều Phương Án Lựa Chọn, Câu Trắc Nghiệm Đúng Sai, Câu Trắc Nghiệm Trả Lời Ngắn. Nội dung kiểm tra bao gồm: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số, Nguyên Hàm, Tích Phân, Phương Pháp Tọa Độ Trong Không Gian, Phân Tích Và Xử Lí Dữ Liệu, Xác Suất. Đây là tài liệu bám sát chương trình, hỗ trợ hiệu quả trong việc hệ thống hóa kiến thức và luyện đề kiểm tra chất lượng.
Câu hỏi liên quan
Cho hai biến cố \(A\) và \(B\) , với \(P\left( A \right)=0,8\), \(P\left( B \right)=0,65\), \(P\left( A\bar{B} \right)=0,55\). Tính \(P\left( \bar{A}B \right)\).
Cho hai biến cố \(A\) và \(B\) , với \(P\left( A \right)=0,8\), \(P\left( B \right)=0,65\), \(P\left( A\bar{B} \right)=0,55\). Tính \(P\left( \bar{A}B \right)\).
Cho A và B là hai biến cố bất kì, với \(P\left( B \right)>0\). Khi đó:
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Lớp 12A1 có 40 học sinh, trong đó có 25 học sinh tham gia câu lạc bộ cầu lông, 16 học sinh tham gia câu lạc bộ đá bóng, 12 học sinh tham gia cả câu lạc bộ cầu lông và câu lạc bộ đá bóng. Chọn ngẫu nhiên một học sinh. Xét các biến cố sau:
\(A:\) "Học sinh được chọn tham gia câu lạc bộ cầu lông";
\(B:\) "Học sinh được chọn tham gia câu lạc bộ đá bóng".
Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Cho hai biến cố \(A\) : “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 6” và \(B\): “Con xúc xắc thứ nhất xuất hiện mặt 4 chấm”. Có bao nhiêu kết quả thuận lợi cho biến cố \(A\) khi biến cố \(B\) xảy ra?
Cho hai biến cố \(A,B\) có xác suất \(P \left( A \right)=0,4;\,P \left( B \right)=0,6;\,\,P \left( AB \right)=0,2\). Tính xác suất \(P \left( A|B \right)\).
Cho hai biến cố \(A\) và \(B\), với \(P\left( A \right)=0,6\), \(P\left( B \right)=0,7\), \(P\left( A\cap B \right)=0,3\). Tính \(P\left( A|B \right)\).
Một căn bệnh \(X\) có \(4\text{ }\!\!%\!\!\text{ }\) dân số mắc phải. Một phương pháp chẩn đoán bệnh \(X\) có tỉ lệ chính xác là \(99\text{ }\!\!%\!\!\text{ }\). Với những người bị bệnh, phương pháp này sẽ đưa ra kết quả dương tính \(99\text{ }\!\!%\!\!\text{ }\) số trường hợp. Với những người không mắc bệnh, phương pháp này cũng chẩn đoán đúng \(98\text{ }\!\!%\!\!\text{ }\). Chọn ngẫu nhiên một người đi kiểm tra bệnh \(X\) bằng phương pháp trên.
Một nhà bán hàng A vì lợi nhuận của bản thân nên đã nhập về một lô hàng bánh kẹo giả kém chất lượng và giống y hết bên ngoài với các loại bánh kẹo chính hãng. Mỗi thùng bánh kẹo được đóng gói với số lượng giống nhau (24 gói bánh kẹo/thùng). Sau đó, để qua mắt lực lượng chức năng nhà bán hàng trộn lẫn kẹo giả và mỗi thùng kẹo chính hãng và chia làm 3 loại:
• Loại I để lẫn vào mỗi thùng 3 gói bánh kẹo hàng giả.
• Loại II để lẫn vào mỗi thùng 2 gói bánh kẹo hàng giả.
• Loại III để lẫn vào mỗi thùng có 4 gói bánh kẹo hàng giả.
Biết số lượng thùng loại I gấp 2 lần số lượng thùng loại II và số thùng loại II gấp 3 lần thùng loại III.
Sau đó nhà bán hàng A nhằm kiểm tra thử xem khi lực lượng chức năng vào kiểm tra có thể qua mắt được hay không? Bằng cách chọn ngẫu nhiên 1 thùng từ trong kho, từ đó chọn ngẫu nhiên 10 gói bánh kẹo bất kì. Tính xác suất để lấy được 2 gói bánh kẹo giả kém chất lượng (làm tròn đến kết quả phần chục).
Một hộp chưa 9 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 9. Bạn An lấy ra ngẫu nhiên 1 thẻ từ hộp, xem số rồi bỏ ra ngoài. Nếu thẻ đó được đánh số chẵn, An cho thêm vào hộp thẻ số 10, 11; ngược lại, An cho thêm vào hộp thẻ số 12, 13, 14. Sau đó, Bạn Việt lấy ra ngẫu nhiên đồng thời 3 thẻ từ hộp. Gọi \(X\) là tích các số trên thẻ Việt lấy ra. Tính xác suất của biến cố An lấy được thẻ ghi số chẵn biết rằng \(X\) chia hết cho 2. (Làm tròn kết quả đến hàng phần trăm).
Một nhóm các nhà khoa học gồm \(4\) nhà toán học nam; \(3\) nhà toán học nữ và \(4\) nhà vật lí học nam. Lấy ngẫu nhiên ba người. Xác suất trong ba người có cả nam và nữ, cả toán và lí bằng? (Kết quả làm tròn đến hàng phần trăm)
Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Hiền, trong đó có 1 bạn nữ và 2 bạn nam. Thầy giáo gọi ngẫu nhiên 1 bạn lên bảng.
Cho hai biến cố A, B là hai biến cố độc lập với \(P(A) = 0,1997\), \(P(B) = 0,1994\). Tính \(P(A|B)\).
Hai bạn An, Bình cùng ném bóng rổ. Mỗi lần chỉ có một người ném với quy tắc như sau: Nếu ném trúng thì người đó sẽ ném tiếp, nếu ném trượt thì đến lượt người kia ném. Ở mọi lần ném bóng, xác suất An ném trúng đều là \({0{,}4}\) và xác suất Bình ném trúng đều là \({0{,}6}\). Hai bạn rút thăm để quyết định người ném bóng đầu tiên. Xác suất người được ném đầu tiên là An và xác suất người được ném đầu tiên là Bình cùng bằng \({0{,}5}\). Tìm xác suất để người ném bóng lần thứ \({2}\) là Bình.
Một nhà máy sản xuất bóng đèn có tỷ lệ bóng đèn đạt tiêu chuẩn là \(82\text{ }\!\!%\!\!\text{ }\). Trước khi xuất ra thị trường, mỗi bóng đèn được sản xuất ra đều phải qua một khâu kiểm tra chất lượng tự động. Vì sự kiềm tra này không chính xác tuyệt đối nên một bóng đèn tốt chi có xác suất \(92\text{ }\!\!%\!\!\text{ }\) được công \(96\text{ }\!\!%\!\!\text{ }\) được loại bỏ.
Gọi \(A\) là biến cố "bóng được công nhận đạt tiêu chuẩn sau khi qua kiểm tra chất lượng".
Gọi \(B\) là biến cố "Sản phầm đạt tiêu chuẩn".
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Lớp 12A1 có 40 học sinh, trong đó có 25 học sinh tham gia câu lạc bộ cầu lông, 16 học sinh tham
gia câu lạc bộ đá bóng, 12 học sinh tham gia cả câu lạc bộ cầu lông và câu lạc bộ đá bóng. Chọn ngẫu nhiên
một học sinh. Xét các biến cố sau:
A: “Học sinh được chọn tham gia câu lạc bộ cầu lông”.
B: “Học sinh được chọn tham gia câu lạc bộ đá bóng”.
Hãy xác định tính Đúng-Sai của các khẳng định.
Lớp 12A có \({40}\) học sinh, trong đó có \({25}\) học sinh tham gia câu lạc bộ Tiếng Anh, \({16}\) học sinh tham gia câu lạc bộ Toán, \({12}\) học sinh vừa tham gia câu lạc bộ tiếng Anh vừa tham gia câu lạc bộ Toán. Chọn ngẫu nhiên 1 học sinh. Xét các biến cố sau:
\({A}\): Học sinh được chọn tham gia câu lạc bộ Tiếng Anh;
\({B}\): Học sinh được chọn tham gia câu lạc bộ Toán.
Trong cơ quan có \(100\) người. Trong đó có \(60\) người gần cơ quan (trong đó có \(40\) người là nam), có tổng cộng \(30\) nữ nhân viên. Theo quy định của cơ quan thì người nào hoặc là nam hoặc gần cơ quan sẽ phải tham gia trực. Tính xác suất để chọn ngẫu nhiên một người trong danh sách mà người đó lại là nữ trực cơ quan? (Kết quả làm tròn đến hàng phần trăm)
Một hộp chưa \(9\) tấm thẻ cùng loại được đánh số lần lượt từ \(1\) đến \(9\). Bạn An lấy ra ngẫu nhiên \(1\) thẻ từ hộp, xem số rồi bỏ ra ngoài. Nếu thẻ đó được đánh số chẵn, An cho thêm vào hộp thẻ số \(10\), \(11\); ngược lại, An cho thêm vào hộp thẻ số \(12\), \(13\), \(14\). Sau đó, Bạn Việt lấy ra ngẫu nhiên đồng thời \(3\) thẻ từ hộp. Gọi \(X\) là tích các số trên thẻ Việt lấy ra. Tính xác suất của biến cố An lấy được thẻ ghi số chẵn biết rằng \(X\) chia hết cho \(2\). (làm tròn kết quả đến hàng phần trăm).
Mỗi hộp đụng 12 bóng đèn, các bóng đèn trong cùng hộp thì cùng màu. Số hộp đựng bóng đèn màu xanh nhiều gấp 9 lần số hộp đựng bóng đèn màu vàng. Trong mỗi hộp đựng bóng đèn màu xanh có 3 bóng bị hỏng, mỗi hộp đựng bóng đèn màu vàng có 2 bóng bị hỏng. Lấy ngẫu nhiên ra hai bóng đèn từ một hộp bất kì, tính xác xuất để lấy ra hai bóng đèn màu xanh, biết cả hai bóng đều bị hỏng (kết quả làm tròn đến hàng phần trăm).