Cho hai biến cố \(A\),\(B\) là hai biến cố độc lập với \(P\left( A \right)=0,1997,\,\,P\left( B \right)=0,1994.\) Tính \(P\left( A|B \right).\)
Bộ Đề Kiểm Tra Tham Khảo Học Kì II - Toán 12 - Cánh Diều – Bộ Đề 01 giúp học sinh ôn luyện chuyên sâu theo định hướng thi cuối cấp. Đề thi có 3 phần theo cấu trúc mới nhất: Phần A. Trắc Nghiệm, bao gồm Câu Trắc Nghiệm Nhiều Phương Án Lựa Chọn, Câu Trắc Nghiệm Đúng Sai, Câu Trắc Nghiệm Trả Lời Ngắn. Các nội dung chính được kiểm tra bao gồm: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số, Nguyên Hàm, Tích Phân, Phương Pháp Tọa Độ Trong Không Gian, Phân Tích Và Xử Lí Dữ Liệu, Xác Suất. Câu hỏi được xây dựng với mức độ phân hóa hợp lý, phù hợp cho cả kiểm tra giữa kỳ và chuẩn bị thi tốt nghiệp THPT.
Câu hỏi liên quan
Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Cho hai biến cố \(A\) : “Tổng số chấm xuất hiện trên hai con xúc xắc lớn hơn 6” và \(B\): “Con xúc xắc thứ nhất xuất hiện mặt 4 chấm”. Có bao nhiêu kết quả thuận lợi cho biến cố \(A\) khi biến cố \(B\) xảy ra?
Có hai chiếc hộp, hộp I có 6 quả bóng màu đỏ và 4 quả bóng màu vàng, hộp II có 7 quả bóng màu đỏ và 3 quả bóng màu vàng, các quả bóng có cùng kích thước và khối lượng. Lấy ngẫu nhiên một quả bóng từ hộp I bỏ vào hộp II. Sau đó, lấy ra ngẫu nhiên một quả bóng từ hộp II. Tính xác suất để quả bóng được lấy ra từ hộp II là quả bóng được chuyển từ hộp I sang, biết rằng quả bóng đó có màu đỏ (làm tròn kết quả đến hàng phần trăm).
Cho một hộp kín có 6 thẻ ATM của BIDV và 4 thẻ ATM của Vietcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ATM của Vietcombank nếu biết lần thứ nhất đã lấy được thẻ ATM của BIDV.
Một nhà bán hàng A vì lợi nhuận của bản thân nên đã nhập về một lô hàng bánh kẹo giả kém chất lượng và giống y hết bên ngoài với các loại bánh kẹo chính hãng. Mỗi thùng bánh kẹo được đóng gói với số lượng giống nhau (24 gói bánh kẹo/thùng). Sau đó, để qua mắt lực lượng chức năng nhà bán hàng trộn lẫn kẹo giả và mỗi thùng kẹo chính hãng và chia làm 3 loại:
• Loại I để lẫn vào mỗi thùng 3 gói bánh kẹo hàng giả.
• Loại II để lẫn vào mỗi thùng 2 gói bánh kẹo hàng giả.
• Loại III để lẫn vào mỗi thùng có 4 gói bánh kẹo hàng giả.
Biết số lượng thùng loại I gấp 2 lần số lượng thùng loại II và số thùng loại II gấp 3 lần thùng loại III.
Sau đó nhà bán hàng A nhằm kiểm tra thử xem khi lực lượng chức năng vào kiểm tra có thể qua mắt được hay không? Bằng cách chọn ngẫu nhiên 1 thùng từ trong kho, từ đó chọn ngẫu nhiên 10 gói bánh kẹo bất kì. Tính xác suất để lấy được 2 gói bánh kẹo giả kém chất lượng (làm tròn đến kết quả phần chục).
Mỗi hộp đựng 12 bóng đèn, các bóng đèn trong cùng hộp thì cùng màu. Số hộp đựng bóng đèn màu xanh nhiều gấp 9 lần số hộp đựng bóng đèn màu vàng. Trong mỗi hộp đựng bóng đèn màu xanh có 3 bóng bị hỏng, mỗi hộp đựng bóng đèrn màu vàng có 2 bóng bị hỏng. Lấy ngẫu nhiên ra hai bóng đèn từ một hộp bất kì, biết cả hai bóng đều bị hỏng. Xác xuất để lấy ra hai bóng đèn màu xanh bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm).
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Lớp 12A1 có 40 học sinh, trong đó có 25 học sinh tham gia câu lạc bộ cầu lông, 16 học sinh tham gia câu lạc bộ đá bóng, 12 học sinh tham gia cả câu lạc bộ cầu lông và câu lạc bộ đá bóng. Chọn ngẫu nhiên một học sinh. Xét các biến cố sau:
\(A:\) "Học sinh được chọn tham gia câu lạc bộ cầu lông";
\(B:\) "Học sinh được chọn tham gia câu lạc bộ đá bóng".
Một hộp chứa 10 viên bi xanh và 5 viên bi đỏ. Bạn An lấy ra ngẫu nhiên 1 viên bi từ hộp, xem màu, rồi bỏ ra ngoài. Nếu viên bi An lấy ra có màu xanh, bạn Bình sẽ lấy ra ngẫu nhiên 2 viên bi từ hộp; còn nếu viên bi An lấy ra có màu đỏ, bạn Bình sẽ lấy ra ngẫu nhiên 3 viên bi từ hộp. Tính xác suất để An lấy được viên bi màu xanh, biết rằng tất cả các viên bi được hai bạn chọn ra đều có đủ cả hai màu. (kết quả làm tròn đến hàng phần trăm).
Cho \(P(A) = \frac{2}{5}\), \(P(B|A) = \frac{1}{4}\). Giá trị của \(P(B \cap A)\) là:
Cho hai biến cố \(A\) và \(B\) , với \(P\left( A \right)=0,8\), \(P\left( B \right)=0,65\), \(P\left( A\bar{B} \right)=0,55\). Tính \(P\left( \bar{A}B \right)\).
Cho A và B là hai biến cố. \(P(A) = 0,7, P(B|A) = 0,9.\) Tính \(P(AB).\)
Một hộp chưa \(9\) tấm thẻ cùng loại được đánh số lần lượt từ \(1\) đến \(9\). Bạn An lấy ra ngẫu nhiên \(1\) thẻ từ hộp, xem số rồi bỏ ra ngoài. Nếu thẻ đó được đánh số chẵn, An cho thêm vào hộp thẻ số \(10\), \(11\); ngược lại, An cho thêm vào hộp thẻ số \(12\), \(13\), \(14\). Sau đó, Bạn Việt lấy ra ngẫu nhiên đồng thời \(3\) thẻ từ hộp. Gọi \(X\) là tích các số trên thẻ Việt lấy ra. Tính xác suất của biến cố An lấy được thẻ ghi số chẵn biết rằng \(X\) chia hết cho \(2\). (làm tròn kết quả đến hàng phần trăm).
Khảo sát thị trường có \(22,5\text{ }\!\!%\!\!\text{ }\) khách hàng sử dụng sản phẩm \(X,50\text{ }\!\!%\!\!\text{ }\) dùng sản phẩm \(Y\), \(36,5\text{ }\!\!%\!\!\text{ }\) trong số người dùng sản phẩm \(Y\) có dùng sản phẩm \(X\). Tìm xác suất một người dùng sản phẩm Y , biết rằng người đó không dùng sản phẩm \(X\).
Cho hai biến cố A và B có \(P(A) = 0,8, P(B) = 0,5, P(AB) = 0,2\). Xác suất của biến cố A với điều kiện B là
Một công ty dược phẩm giới thiệu một dụng cụ để kiểm tra sớm bệnh sốt xuất huyết. Về báo cáo kiểm định chất lượng của sản phẩm, họ cho biết như sau: Số người được thử là \(8.000\), trong số đó có \(1.200\) người đã bị nhiễm bệnh sốt xuất huyết và có \(6.800\) người không bị nhiễm bệnh sốt xuất huyết. Nhưng khi kiểm tra lại bằng dụng cụ của công ty, trong \(1.200\) người đã bị nhiễm bệnh sốt xuất huyết, có \(70%\) số người đó cho kết quả dương tính, còn lại cho kết quả âm tính. Trong \(6.800\) người không bị nhiễm bệnh sốt xuất huyết, có \(5%\) số người đó cho kết quả dương tính, còn lại cho kết quả âm tính. Xác suất mà một bệnh nhân với kết quả kiểm tra dương tính là bị nhiễm bệnh sốt xuất huyết bằng bao nhiêu? (viết kết quả dưới dạng số thập phân và làm tròn đến hàng phần trăm).
Một công ty bảo hiểm nhận thấy có \(48%\) số người mua bảo hiểm ô tô là phụ nữ và có \(36%\) số người mua bảo hiểm ô tô là phụ nữ trên \(45\) tuổi. Biết một người mua bảo hiểm ô tô là phụ nữ, tính xác suất người đó trên \(45\) tuổi?
Hai bạn An, Bình cùng ném bóng rổ. Mỗi lần chỉ có một người ném với quy tắc như sau: Nếu ném trúng thì người đó sẽ ném tiếp, nếu ném trượt thì đến lượt người kia ném. Ở mọi lần ném bóng, xác suất An ném trúng đều là \({0{,}4}\) và xác suất Bình ném trúng đều là \({0{,}6}\). Hai bạn rút thăm để quyết định người ném bóng đầu tiên. Xác suất người được ném đầu tiên là An và xác suất người được ném đầu tiên là Bình cùng bằng \({0{,}5}\). Tìm xác suất để người ném bóng lần thứ \({2}\) là Bình.
Trong mỗi ý a), b), c). d) ở mỗi câu, học sinh chọn đúng hoặc sai.
Lớp 12A có \({40}\) học sinh, trong đó có \({25}\) học sinh tham gia câu lạc bộ Tiếng Anh, \({16}\) học sinh tham gia câu lạc bộ Toán, \({12}\) học sinh vừa tham gia câu lạc bộ tiếng Anh vừa tham gia câu lạc bộ Toán. Chọn ngẫu nhiên 1 học sinh. Xét các biến cố sau:
\({A}\): Học sinh được chọn tham gia câu lạc bộ Tiếng Anh;
\({B}\): Học sinh được chọn tham gia câu lạc bộ Toán.
Cho hai biến cố A, B thỏa mãn \(P\left( A \right)=\frac{2}{5},P\left( B|A \right)=\frac{1}{3}\)và \(P\left( B|\overline{A} \right)=\frac{1}{4}\). Tính \(P\left( B\overline{A} \right)\).
Cho hai biến cố A, B thỏa mãn \(P\left( A \right)=\frac{2}{5},P\left( B|A \right)=\frac{1}{3}\)và \(P\left( B|\overline{A} \right)=\frac{1}{4}\). Tính \(P\left( B\overline{A} \right)\).
Cho hai biến cố \(A,B\) có xác suất \(P \left( A \right)=0,4;\,P \left( B \right)=0,6;\,\,P \left( AB \right)=0,2\). Tính xác suất \(P \left( A|B \right)\).