Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai (Làm tròn đến chữ số hàng phần trăm).
Hãy suy nghĩ và trả lời câu hỏi trước khi xem đáp án
Gọi \(A\) là biến cố: “Lấy được một viên bi xanh ở lần thứ nhất”.
Gọi \(B\) là biến cố: “Lấy được một viên bi trắng ở lần thứ hai”.
ta cần tính xác suất \(P(A \cap B)\).
Theo công thức nhân xác suất: \(P(A \cap B)=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B} \mid A)\).
Vì có 30 viên bi xanh trong tổng số 50 viên bi nên \(P(A)=\frac{30}{50}=\frac{3}{5}\).
Nếu \(A\) đã xảy ra, tức là một viên bi xanh đã được lấy ra ở lần thứ nhất, thì còn lại trong bình 49 viên bi trong đó số viên bi trắng là 20 , do đó \(P(B \mid A)=\frac{20}{49}\).
Vậy xác suất cần tìm là: \(P(A \cap B)=\mathrm{P}(\mathrm{A}) \cdot \mathrm{P}(\mathrm{B} \mid A)=\frac{3}{5} \cdot \frac{20}{49}=\frac{12}{29}=0,41\).
Bộ Đề Kiểm Tra Tham Khảo Học Kì II - Toán 12 - Chân Trời Sáng Tạo – Bộ Đề 01 được biên soạn theo hướng tiếp cận đề thi tốt nghiệp THPT, giúp học sinh làm quen với các dạng bài trọng tâm. Đề kiểm tra gồm 3 phần tiêu chuẩn: Phần A. Trắc Nghiệm, gồm Câu Trắc Nghiệm Nhiều Phương Án Lựa Chọn, Câu Trắc Nghiệm Đúng Sai, Câu Trắc Nghiệm Trả Lời Ngắn. Nội dung tập trung vào các chuyên đề then chốt: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số, Nguyên Hàm, Tích Phân, Phương Pháp Tọa Độ Trong Không Gian, Phân Tích Và Xử Lí Dữ Liệu, Xác Suất. Đây là tài liệu giúp học sinh vừa ôn tập giữa kỳ hiệu quả, vừa sẵn sàng bước vào giai đoạn luyện thi tốt nghiệp.
Câu hỏi liên quan
Bạn Thuỷ lần lượt bỏ một cách ngẫu nhiên 8 viên bị cùng loại vào 3 chiếc hộp màu xanh, đỏ, vàng. Mỗi hộp có thể chứa từ 0 đến 8 viên bị. Tính xác suất của biến cố có một hộp chứa 4 viên bị, hai hộp còn lại, mỗi hộp chứa 2 viên bi (làm tròn kết quả đến hàng phần trăm).
Hai bạn An, Bình cùng ném bóng rổ. Mỗi lần chỉ có một người ném với quy tắc như sau: Nếu ném trúng thì người đó sẽ ném tiếp, nếu ném trượt thì đến lượt người kia ném. Ở mọi lần ném bóng, xác suất An ném trúng đều là \({0{,}4}\) và xác suất Bình ném trúng đều là \({0{,}6}\). Hai bạn rút thăm để quyết định người ném bóng đầu tiên. Xác suất người được ném đầu tiên là An và xác suất người được ném đầu tiên là Bình cùng bằng \({0{,}5}\). Tìm xác suất để người ném bóng lần thứ \({2}\) là Bình.
Trước khi đưa sản phẩm ra thị trường, người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 50 người trả lời “sẽ mua”, 90 người trả lời “có thể sẽ mua” và 60 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 60%, 40% và 1%. Trong số khách hàng thực sự mua sản phẩm thì xác suất khách hàng trả lời “sẽ mua” là \(\frac{a}{b}\). Khi đó giá trị của biểu thức \(T=\frac{1}{2}a+b\) bằng bao nhiêu ?
Một hộp chưa \(9\) tấm thẻ cùng loại được đánh số lần lượt từ \(1\) đến \(9\). Bạn An lấy ra ngẫu nhiên \(1\) thẻ từ hộp, xem số rồi bỏ ra ngoài. Nếu thẻ đó được đánh số chẵn, An cho thêm vào hộp thẻ số \(10\), \(11\); ngược lại, An cho thêm vào hộp thẻ số \(12\), \(13\), \(14\). Sau đó, Bạn Việt lấy ra ngẫu nhiên đồng thời \(3\) thẻ từ hộp. Gọi \(X\) là tích các số trên thẻ Việt lấy ra. Tính xác suất của biến cố An lấy được thẻ ghi số chẵn biết rằng \(X\) chia hết cho \(2\). (làm tròn kết quả đến hàng phần trăm).
Một nhà bán hàng A vì lợi nhuận của bản thân nên đã nhập về một lô hàng bánh kẹo giả kém chất lượng và giống y hết bên ngoài với các loại bánh kẹo chính hãng. Mỗi thùng bánh kẹo được đóng gói với số lượng giống nhau (24 gói bánh kẹo/thùng). Sau đó, để qua mắt lực lượng chức năng nhà bán hàng trộn lẫn kẹo giả và mỗi thùng kẹo chính hãng và chia làm 3 loại:
• Loại I để lẫn vào mỗi thùng 3 gói bánh kẹo hàng giả.
• Loại II để lẫn vào mỗi thùng 2 gói bánh kẹo hàng giả.
• Loại III để lẫn vào mỗi thùng có 4 gói bánh kẹo hàng giả.
Biết số lượng thùng loại I gấp 2 lần số lượng thùng loại II và số thùng loại II gấp 3 lần thùng loại III.
Sau đó nhà bán hàng A nhằm kiểm tra thử xem khi lực lượng chức năng vào kiểm tra có thể qua mắt được hay không? Bằng cách chọn ngẫu nhiên 1 thùng từ trong kho, từ đó chọn ngẫu nhiên 10 gói bánh kẹo bất kì. Tính xác suất để lấy được 2 gói bánh kẹo giả kém chất lượng (làm tròn đến kết quả phần chục).
Cho hai biến cố \(A\) và \(B\). Xác suất của biến cố \(B\), tính trong điều kiện biết rằng biến cố \(A\) đã xảy ra, được gọi là xác suất của \(B\) với điều kiện \(A\) kí hiệu là:
Cho hai biến cố \(A\) và \(B\), với \(P\left( A \right)=0,6\), \(P\left( B \right)=0,7\), \(P\left( A\cap B \right)=0,3\). Tính \(P\left( A|B \right)\).
Cho hai biến cố \(A,B\) thoả mãn \(P\left( A \right)=0,4;P\left( B \right)=0,3;P\left( A\mid B \right)=0,25\). Khi đó, \(P\left( B\mid A \right)\) bằng:
Cho hai biến cố A và B có \(P(A) = 0,8, P(B) = 0,5, P(AB) = 0,2\). Xác suất của biến cố A với điều kiện B là
Cho \(P(A) = \frac{2}{5}\), \(P(B|A) = \frac{1}{4}\). Giá trị của \(P(B \cap A)\) là:
Cho một hộp kín có 6 thẻ ATM của BIDV và 4 thẻ ATM của Vietcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ATM của Vietcombank nếu biết lần thứ nhất đã lấy được thẻ ATM của BIDV.
Cho hai biến cố A, B thỏa mãn \(P\left( A \right)=\frac{2}{5},P\left( B|A \right)=\frac{1}{3}\)và \(P\left( B|\overline{A} \right)=\frac{1}{4}\). Tính \(P\left( B\overline{A} \right)\).
Cho hai biến cố A, B là hai biến cố độc lập với \(P(A) = 0,1997\), \(P(B) = 0,1994\). Tính \(P(A|B)\).
Ở một thị xã, tỉ lệ mắc căn bệnh M là 22%. Chính quyền thị xã đó muốn biết danh sách những người bị mắc bệnh nên đã tổ chức xét nghiệm cho toàn bộ người dân. Tuy nhiên bộ “test” được sử dụng trong phương pháp xét nghiệm này có những sai sót nhất định:
- Nếu một người không bị bệnh thì xác suất bộ “test” cho ra kết quả dương tính là 10%.
- Nếu bộ “test” cho ra kết quả dương tính thì xác suất bị bệnh là 70%.
Một công ty bảo hiểm nhận thấy có \(48%\) số người mua bảo hiểm ô tô là phụ nữ và có \(36%\) số người mua bảo hiểm ô tô là phụ nữ trên \(45\) tuổi. Biết một người mua bảo hiểm ô tô là phụ nữ, tính xác suất người đó trên \(45\) tuổi?
Hãy xác định tính Đúng-Sai của các khẳng định.
Lớp 12A có \({40}\) học sinh, trong đó có \({25}\) học sinh tham gia câu lạc bộ Tiếng Anh, \({16}\) học sinh tham gia câu lạc bộ Toán, \({12}\) học sinh vừa tham gia câu lạc bộ tiếng Anh vừa tham gia câu lạc bộ Toán. Chọn ngẫu nhiên 1 học sinh. Xét các biến cố sau:
\({A}\): Học sinh được chọn tham gia câu lạc bộ Tiếng Anh;
\({B}\): Học sinh được chọn tham gia câu lạc bộ Toán.
Một hộp chưa 9 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 9. Bạn An lấy ra ngẫu nhiên 1 thẻ từ hộp, xem số rồi bỏ ra ngoài. Nếu thẻ đó được đánh số chẵn, An cho thêm vào hộp thẻ số 10, 11; ngược lại, An cho thêm vào hộp thẻ số 12, 13, 14. Sau đó, Bạn Việt lấy ra ngẫu nhiên đồng thời 3 thẻ từ hộp. Gọi \(X\) là tích các số trên thẻ Việt lấy ra. Tính xác suất của biến cố An lấy được thẻ ghi số chẵn biết rằng \(X\) chia hết cho 2. (Làm tròn kết quả đến hàng phần trăm).
Một công ty dược phẩm giới thiệu một dụng cụ để kiểm tra sớm bệnh sốt xuất huyết. Về báo cáo kiểm định chất lượng của sản phẩm, họ cho biết như sau: Số người được thử là \(8.000\), trong số đó có \(1.200\) người đã bị nhiễm bệnh sốt xuất huyết và có \(6.800\) người không bị nhiễm bệnh sốt xuất huyết. Nhưng khi kiểm tra lại bằng dụng cụ của công ty, trong \(1.200\) người đã bị nhiễm bệnh sốt xuất huyết, có \(70%\) số người đó cho kết quả dương tính, còn lại cho kết quả âm tính. Trong \(6.800\) người không bị nhiễm bệnh sốt xuất huyết, có \(5%\) số người đó cho kết quả dương tính, còn lại cho kết quả âm tính. Xác suất mà một bệnh nhân với kết quả kiểm tra dương tính là bị nhiễm bệnh sốt xuất huyết bằng bao nhiêu? (viết kết quả dưới dạng số thập phân và làm tròn đến hàng phần trăm).
Có một kho chứa bia kém chất lượng chứa các thùng giống nhau (24 lon/thùng) gồm 2 loại: loại I để lẫn mỗi thùng 5 lon quá hạn sử dụng, loại II để lẫn mỗi thùng 3 lon quá hạn. Biết số lượng thùng loại I gấp 2 lần số lượng thùng loại II. Chọn ngẫu nhiên 1 thùng từ trong kho, từ thùng đó chọn ngẫu nhiên 10 lon thì thấy trong 10 lon đó có hai lon quá hạn sử dụng. Tính xác suất 10 lon được lấy là bia loại I (làm tròn kết quả đến hàng phần trăm).
Cho hai biến cố ngẫu nhiên \(A\) và \(B\) có \(P(A) = 0,7; P(B) = 0,3; P(\overline{A}B) = 0,2\). Xác suất của \(A\) với điều kiện \(\overline{B}\) là: