Cho hai biến cố \(A\) và \(B\). Xác suất của biến cố \(B\), tính trong điều kiện biết rằng biến cố \(A\) đã xảy ra, được gọi là xác suất của \(B\) với điều kiện \(A\) kí hiệu là:
Bộ Đề Kiểm Tra Tham Khảo Học Kì II - Toán 12 - Cánh Diều – Bộ Đề 01 giúp học sinh ôn luyện chuyên sâu theo định hướng thi cuối cấp. Đề thi có 3 phần theo cấu trúc mới nhất: Phần A. Trắc Nghiệm, bao gồm Câu Trắc Nghiệm Nhiều Phương Án Lựa Chọn, Câu Trắc Nghiệm Đúng Sai, Câu Trắc Nghiệm Trả Lời Ngắn. Các nội dung chính được kiểm tra bao gồm: Ứng Dụng Đạo Hàm Để Khảo Sát Và Vẽ Đồ Thị Của Hàm Số, Nguyên Hàm, Tích Phân, Phương Pháp Tọa Độ Trong Không Gian, Phân Tích Và Xử Lí Dữ Liệu, Xác Suất. Câu hỏi được xây dựng với mức độ phân hóa hợp lý, phù hợp cho cả kiểm tra giữa kỳ và chuẩn bị thi tốt nghiệp THPT.
Câu hỏi liên quan
Một thư viện có hai phòng riêng biệt, phòng A và phòng B.Xác suất chọn được một quyển sách về chủ đề Khoa học tự nhiên thuộc phòng A và thuộc phòng B lần lượclà 0,25 và 0,5. Chọn ngẫu nhiên 1 quyển sách của thư viện ; tính xác suất để chọn được 1 cuốn sách phòng A và thuộc chủ đề Khoa học tự nhiên là bao nhiêu? (kết quả làm tròn đến hàng phần chục)
Trong một túi có một số viên kẹo cùng loại, chỉ khác màu, trong đó có \(6\)viên kẹo màu cam, còn lại là kẹo màu vàng. Hà lấy ngẫu nhiên \(1\) viên kẹo từ trong túi, không trả lại. Sau đó Hà lại lấy ngẫu nhiên thêm \(1\) viên kẹo khác từ trong túi. Biết rằng xác suất Hà lấy được cả hai viên kẹo màu cam là \(\frac{1}{3}\). Hỏi ban đầu trong túi có bao nhiêu viên kẹo?
Khảo sát thị trường có \(22,5\text{ }\!\!%\!\!\text{ }\) khách hàng sử dụng sản phẩm \(X,50\text{ }\!\!%\!\!\text{ }\) dùng sản phẩm \(Y\), \(36,5\text{ }\!\!%\!\!\text{ }\) trong số người dùng sản phẩm \(Y\) có dùng sản phẩm \(X\). Tìm xác suất một người dùng sản phẩm Y , biết rằng người đó không dùng sản phẩm \(X\).
Trước khi đưa một loại sản phẩm ra thị trường, người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó. Kết quả thống kê như sau: có 105 người trả lời “sẽ mua”; có 95 người trả lời “không mua”. Kinh nghiệm cho thấy tỉ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời “sẽ mua” và “không mua” lần lượt là 70% và 30%.
Gọi A là biến cố “Người được phỏng vấn thực sự sẽ mua sản phẩm”.
Gọi B là biến cố “Người được phỏng vấn trả lời sẽ mua sản phẩm”.
Một hộp chưa \(9\) tấm thẻ cùng loại được đánh số lần lượt từ \(1\) đến \(9\). Bạn An lấy ra ngẫu nhiên \(1\) thẻ từ hộp, xem số rồi bỏ ra ngoài. Nếu thẻ đó được đánh số chẵn, An cho thêm vào hộp thẻ số \(10\), \(11\); ngược lại, An cho thêm vào hộp thẻ số \(12\), \(13\), \(14\). Sau đó, Bạn Việt lấy ra ngẫu nhiên đồng thời \(3\) thẻ từ hộp. Gọi \(X\) là tích các số trên thẻ Việt lấy ra. Tính xác suất của biến cố An lấy được thẻ ghi số chẵn biết rằng \(X\) chia hết cho \(2\). (làm tròn kết quả đến hàng phần trăm).
Cho hai biến cố A và B có \(P(A) = 0,8, P(B) = 0,5, P(AB) = 0,2\). Xác suất của biến cố A với điều kiện B là
Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Hiền, trong đó có 1 bạn nữ và 2 bạn nam. Thầy giáo gọi ngẫu nhiên 1 bạn lên bảng.
Một khu dân cư có \(60\text{ }\!\!%\!\!\text{ }\) các hộ gia đình có không quá 4 thành viên. Trong các gia đình có không quá 4 thành viên, có \(20\text{ }\!\!%\!\!\text{ }\) gia đình có ba thế hệ cùng chung sống; trong các gia đình có trên 4 thành viên, có \(70\text{ }\!\!%\!\!\text{ }\) gia đình có ba thế hệ cùng chung sống. Chọn ngẫu nhiên 1 hộ gia đình trong khu dân cư. Biết rằng gia đình đó có ba thế hệ cùng chung sống, tính xác suất để gia đình đó có trên 4 thành viên.
Một nhà đầu tư phân loại các dự án trong một chu kỳ đầu tư thành 3 loại: ít rủi ro, rủi ro trung bình và rủi ro cao. Tỷ lệ các dự án các loại đó tương ứng là \(20%;\text{ }45%\text{ }v\grave{a}\text{ }35%\). Kinh nghiệm cho thấy tỷ lệ các dự án gặp rủi ro khi đầu tư tương ứng là \(5%;\text{ }20%\text{ }v\grave{a}\text{ }40%.\) Nếu một dự án gặp rủi ro sau kỳ đầu tư thì khả năng dự án rủi ro lớn nhất là bao nhiêu?
Cho một hộp kín có 6 thẻ ATM của BIDV và 4 thẻ ATM của Vietcombank. Lấy ngẫu nhiên lần lượt 2 thẻ (lấy không hoàn lại). Tìm xác suất để lần thứ hai lấy được thẻ ATM của Vietcombank nếu biết lần thứ nhất đã lấy được thẻ ATM của BIDV.
Cho A và B là hai biến cố bất kì, với \(P\left( B \right)>0\). Khi đó:
Hai bạn An, Bình cùng ném bóng rổ. Mỗi lần chỉ có một người ném với quy tắc như sau: Nếu ném trúng thì người đó sẽ ném tiếp, nếu ném trượt thì đến lượt người kia ném. Ở mọi lần ném bóng, xác suất An ném trúng đều là 0,4 và xác suất Bình ném trúng đều là 0,6. Hai bạn rút thăm để quyết định người ném bóng đầu tiên. Xác suất người được ném đầu tiên là An và xác suất người được ném đầu tiên là Bình cùng bằng 0,5. Tìm xác suất để người ném bóng lần thứ 2 là Bình.
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Lớp 12A1 có 40 học sinh, trong đó có 25 học sinh tham gia câu lạc bộ cầu lông, 16 học sinh tham gia câu lạc bộ đá bóng, 12 học sinh tham gia cả câu lạc bộ cầu lông và câu lạc bộ đá bóng. Chọn ngẫu nhiên một học sinh. Xét các biến cố sau:
\(A:\) "Học sinh được chọn tham gia câu lạc bộ cầu lông";
\(B:\) "Học sinh được chọn tham gia câu lạc bộ đá bóng".
Trước khi đưa sản phẩm ra thị trường, người ta đã phỏng vấn ngẫu nhiên 200 khách hàng về sản phẩm đó và thấy có 50 người trả lời “sẽ mua”, 90 người trả lời “có thể sẽ mua” và 60 người trả lời “không mua”. Kinh nghiệm cho thấy tỷ lệ khách hàng thực sự sẽ mua sản phẩm tương ứng với những cách trả lời trên tương ứng là 60%, 40% và 1%. Trong số khách hàng thực sự mua sản phẩm thì xác suất khách hàng trả lời “sẽ mua” là \(\frac{a}{b}\). Khi đó giá trị của biểu thức \(T=\frac{1}{2}a+b\) bằng bao nhiêu ?
Cho hai biến cố A, B thỏa mãn \(P\left( A \right)=\frac{2}{5},P\left( B|A \right)=\frac{1}{3}\)và \(P\left( B|\overline{A} \right)=\frac{1}{4}\). Tính \(P\left( B\overline{A} \right)\).
Một công ty dược phẩm giới thiệu một dụng cụ để kiểm tra sớm bệnh sốt xuất huyết. Về báo cáo kiểm định chất lượng của sản phẩm, họ cho biết như sau: Số người được thử là \(8.000\), trong số đó có \(1.200\) người đã bị nhiễm bệnh sốt xuất huyết và có \(6.800\) người không bị nhiễm bệnh sốt xuất huyết. Nhưng khi kiểm tra lại bằng dụng cụ của công ty, trong \(1.200\) người đã bị nhiễm bệnh sốt xuất huyết, có \(70%\) số người đó cho kết quả dương tính, còn lại cho kết quả âm tính. Trong \(6.800\) người không bị nhiễm bệnh sốt xuất huyết, có \(5%\) số người đó cho kết quả dương tính, còn lại cho kết quả âm tính. Xác suất mà một bệnh nhân với kết quả kiểm tra dương tính là bị nhiễm bệnh sốt xuất huyết bằng bao nhiêu? (viết kết quả dưới dạng số thập phân và làm tròn đến hàng phần trăm).
Cho hai biến cố A, B thỏa mãn \(P\left( A \right)=\frac{2}{5},P\left( B|A \right)=\frac{1}{3}\)và \(P\left( B|\overline{A} \right)=\frac{1}{4}\). Tính \(P\left( B\overline{A} \right)\).
Cho hai biến cố \(A,B\) có xác suất \(P \left( A \right)=0,4;\,P \left( B \right)=0,6;\,\,P \left( AB \right)=0,2\). Tính xác suất \(P \left( A|B \right)\).
Một hộp chưa 9 tấm thẻ cùng loại được đánh số lần lượt từ 1 đến 9. Bạn An lấy ra ngẫu nhiên 1 thẻ từ hộp, xem số rồi bỏ ra ngoài. Nếu thẻ đó được đánh số chẵn, An cho thêm vào hộp thẻ số 10, 11; ngược lại, An cho thêm vào hộp thẻ số 12, 13, 14. Sau đó, Bạn Việt lấy ra ngẫu nhiên đồng thời 3 thẻ từ hộp. Gọi \(X\) là tích các số trên thẻ Việt lấy ra ngoài. Tính xác suất của biến cố An lấy được thẻ ghi số chẵn biết rằng \(X\) chia hết cho 2. (làm tròn kết quả đến hàng phần trăm).
Cho \(P(A) = \frac{2}{5}, P(B|A)=\frac{1}{3}, P(\overline{B}|A) = \frac{1}{4}\). Giá trị của \(P(B)\) là